1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svet-max [94.6K]
3 years ago
6

What is the expanded form of this number? 204.017

Mathematics
1 answer:
Anna [14]3 years ago
5 0

Answer:

(2×100) + (4×1) + (1÷10) + (7÷100)

You might be interested in
carl has a soccer game every 4th day and matt had one every 5th day. when will they have a game on the same day?
Valentin [98]
Every 20th day they will play
3 0
3 years ago
What two fractions are being<br> multiplied?
tiny-mole [99]
I see 2/3 and 1/2 being multiplied
3 0
3 years ago
What is the slope of the line y = 5x? Just write the<br> number for your answer.
vitfil [10]

Answer:

5

General Formulas and Concepts:

<u>Algebra I</u>

Slope-Intercept Form: y = mx + b

  • m - slope
  • b - y-intercept

Step-by-step explanation:

<u>Step 1: Define</u>

y = 5x

<u>Step 2: Break Function</u>

<em>Identify Parts</em>

Slope <em>m</em> = 5

y-intercept <em>b</em> = 0

5 0
3 years ago
Determine formula of the nth term 2, 6, 12 20 30,42​
nalin [4]

Check the forward differences of the sequence.

If \{a_n\} = \{2,6,12,20,30,42,\ldots\}, then let \{b_n\} be the sequence of first-order differences of \{a_n\}. That is, for n ≥ 1,

b_n = a_{n+1} - a_n

so that \{b_n\} = \{4, 6, 8, 10, 12, \ldots\}.

Let \{c_n\} be the sequence of differences of \{b_n\},

c_n = b_{n+1} - b_n

and we see that this is a constant sequence, \{c_n\} = \{2, 2, 2, 2, \ldots\}. In other words, \{b_n\} is an arithmetic sequence with common difference between terms of 2. That is,

2 = b_{n+1} - b_n \implies b_{n+1} = b_n + 2

and we can solve for b_n in terms of b_1=4:

b_{n+1} = b_n + 2

b_{n+1} = (b_{n-1}+2) + 2 = b_{n-1} + 2\times2

b_{n+1} = (b_{n-2}+2) + 2\times2 = b_{n-2} + 3\times2

and so on down to

b_{n+1} = b_1 + 2n \implies b_{n+1} = 2n + 4 \implies b_n = 2(n-1)+4 = 2(n + 1)

We solve for a_n in the same way.

2(n+1) = a_{n+1} - a_n \implies a_{n+1} = a_n + 2(n + 1)

Then

a_{n+1} = (a_{n-1} + 2n) + 2(n+1) \\ ~~~~~~~= a_{n-1} + 2 ((n+1) + n)

a_{n+1} = (a_{n-2} + 2(n-1)) + 2((n+1)+n) \\ ~~~~~~~ = a_{n-2} + 2 ((n+1) + n + (n-1))

a_{n+1} = (a_{n-3} + 2(n-2)) + 2((n+1)+n+(n-1)) \\ ~~~~~~~= a_{n-3} + 2 ((n+1) + n + (n-1) + (n-2))

and so on down to

a_{n+1} = a_1 + 2 \displaystyle \sum_{k=2}^{n+1} k = 2 + 2 \times \frac{n(n+3)}2

\implies a_{n+1} = n^2 + 3n + 2 \implies \boxed{a_n = n^2 + n}

6 0
2 years ago
Find the area of object and what is method
Alborosie

It would be...

(18 +28) divided by two

then take that and multiply it by the height - 5

the 6 in this equation doesn't matter because it is not the height of the shape

8 0
4 years ago
Other questions:
  • Write the quadratic equation whose roots are 3 and -1, and whose leading coefficient is 5.
    10·1 answer
  • Tina Is saving To Buy A New Computer
    8·2 answers
  • V QUICK NOW V
    13·1 answer
  • Miss.Abby bought 7 candy bars in to school. She chose to share them equally with three students. How many candy bars does each s
    13·1 answer
  • Find the volume of following cube:<br><br> Figure is not drawn to scale<br><br> Volume of the cube =
    5·1 answer
  • A spinner with 8 equal sections was spun 140 times. What is a reasonable prediction for the number of times the spinner will lan
    6·2 answers
  • On Sunday 77,098 fans attended a New York Jets game. The same day, 3,397 more fans attended a New York Giants game than attended
    5·2 answers
  • Find the value of x (approximately),
    9·1 answer
  • Which expression is equivalent to the expression -3(4x - 2) - 2x ?
    14·1 answer
  • Y=2x-4<br> What are the five ordered pairs
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!