Answer:
36 inches
Step-by-step explanation:
Given data
Area of triangle =2 1/4 square inches
Area =9/4 square inches
Height of triangle =1/8 inches
We know that the expression for the area of triangle is
Area = 1/2Base *Height
9/4=1/2*Base *1/8
9/4=Base/16
Cross multiply
16*9=Base*4
144=Base*4
Base =144/4
Base=36 inches
Heck naw Fawk that -3-!!!!!
6t-10is the awsner. If s is the number of nautical miles separating the ships, express s in terms of t(the number of hours after 12 noon). I formed the equation s squared to the second power equals (12t) squard to the second power + (10 - 16) squared to the second power
Associative property works in addition and multiplication.
Associative property in Addition: (a + b)+ c = a + (b + c)
Associative property in Multiplication: (a x b) x c = a x (b x c)
Associative property in Subtraction: (a - b) - c is not equal to a - (b - c)
Associative property in Division: (a divided by b) divided by c is not equal to a divided by (b divided by c).
Thus, associative property is not true for all integers.
Answer:

General Formulas and Concepts:
<u>Pre-Calculus</u>
2x2 Matrix Determinant:

3x3 Matrix Determinant:

<u>Calculus</u>
Limits
Limit Rule [Variable Direct Substitution]:

Limit Property [Multiplied Constant]:

Special Limit Rule [L’Hopital’s Rule]:

Derivatives
- Derivatives
- Derivative Notation
Derivative Property [Addition/Subtraction]:

Derivative Rule [Chain Rule]:
![\displaystyle [u(v)]' = u'(v)v'](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Bu%28v%29%5D%27%20%3D%20u%27%28v%29v%27)
Step-by-step explanation:
*Note:
I will not be able to fit in all the derivative work and will assume you can take derivatives with ease.
<u />
<u>Step 1: Define</u>
<em>Identify given.</em>
<em />

<u>Step 2: Find Limit Pt. 1</u>
- [Function] Simplify [3x3 and 2x2 Matrix Determinant]:

- [Function] Substitute in <em>x</em>:

<u>Step 3: Find Limit Pt. 2</u>
- [Limit] Rewrite [Limit Property - Multiplied Constant]:

- [Limit] Apply Limit Rule [Variable Direct Substitution]:

Since we have an indeterminant form, we will have to use L'Hopital's Rule. We can <em>differentiate</em> using basic differentiation techniques listed above under "<u>Calculus</u>":
![\displaystyle \frac{d \Delta (\frac{\pi}{3})}{dh} = -3\sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \tan \bigg( 2h + \frac{\pi}{3} \bigg) + tan^2 \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 3 \tan^2 \bigg( h + \frac{\pi}{3} + 3 \bigg] - 3\sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg] + \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 6 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 6 \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%20%5CDelta%20%28%5Cfrac%7B%5Cpi%7D%7B3%7D%29%7D%7Bdh%7D%20%3D%20-3%5Csqrt%7B3%7D%20%5Cbigg%5B%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%201%20%5Cbigg%5D%20%5Ctan%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%20tan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%203%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%2B%203%20%5Cbigg%5D%20-%203%5Csqrt%7B3%7D%20%5Ctan%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%202%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%202%20%5Cbigg%5D%20%2B%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%206%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%206%20%5Cbigg%5D)

Using L'Hopital's Rule, we can <em>substitute</em> the derivatives and evaluate again. When we do so, we should get <em>another</em> indeterminant form. We will need to use L'Hopital's Rule <em>again</em>:
![\displaystyle \frac{d^2 \Delta (\frac{\pi}{3})}{dh^2} = \tan \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] - 2\sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \bigg[ \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 1 \bigg] - \sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%5E2%20%5CDelta%20%28%5Cfrac%7B%5Cpi%7D%7B3%7D%29%7D%7Bdh%5E2%7D%20%3D%20%5Ctan%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%202%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%202%20%5Cbigg%5D%20%5Cbigg%5B%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%201%20%5Cbigg%5D%20-%202%5Csqrt%7B3%7D%20%5Cbigg%5B%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%201%20%5Cbigg%5D%20%5Cbigg%5B%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%201%20%5Cbigg%5D%20-%20%5Csqrt%7B3%7D%20%5Cbigg%5B%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%201%20%5Cbigg%5D%20%5Cbigg%5B%202%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%202%20%5Cbigg%5D)
![\displaystyle + \tan^3 \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] - \sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] + \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg] \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%2B%20%5Ctan%5E3%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%202%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%202%20%5Cbigg%5D%20-%20%5Csqrt%7B3%7D%20%5Ctan%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Ctan%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%202%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%202%20%5Cbigg%5D%20%2B%20%5Ctan%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%202%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%202%20%5Cbigg%5D%20%5Cbigg%5B%204%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%204%20%5Cbigg%5D)
![\displaystyle - 2\sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg] + 2 \tan^3 \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20-%202%5Csqrt%7B3%7D%20%5Ctan%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Ctan%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%204%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%204%20%5Cbigg%5D%20%2B%202%20%5Ctan%5E3%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%204%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%204%20%5Cbigg%5D)

<em>Substituting in </em>the 2nd derivative found via L'Hopital's Rule should now give us a numerical value when evaluating the limit using limit rules and the unit circle:

∴ we have <em>evaluated</em> the given limit.
---
Learn more about limits: brainly.com/question/27438198
---