The goal to proving identities is to transform one side into the other. We can only pick one side to transform while the other side stays the same the entire time. The general rule of thumb is to transform the more complicated side (though there may be exceptions to this guideline).
So I'll take the left hand side and try to turn it into 
One way we can do that is through the following steps:

Since we've shown that the left hand side transforms into the right hand side, this verifies the equation is an identity.
Answer:

Step-by-step explanation:
start by foiling out the given function

next, use the power rule to find the derivative
power rule: To use the power rule, multiply the variable's exponent n, by its coefficient a, then subtract 1 from the exponent. If there's no coefficient (the coefficient is 1), then the exponent will become the new coefficient.

Answer:
B
Step-by-step explanation:
Answer:
1
Step-by-step explanation:
Numbers to the "right of 0" implies the positive numbers. And an integer has no fractional component. Thus, the first integer to the right of 0 would be 1.
Cheers.
Answer:
Same to me he sent a link to like almost every question it didn't work for me
Step-by-step explanation: