Answer: 
d= -12 + 925
Step-by-step explanation:
decrease means negative and Increase means up (positive) so probably that why your answer was wrong 
 
        
                    
             
        
        
        
You will need 2 equations, since there are 2 variables (hours worked by George and the ones of Dorothy), let's say x and y respectively
We know 
x+y=48 (since they work 48 hours together) and
12x+11.25y=555 (since the sum of their respective hours multiplied by their salary gives a total of 555$)
To solve that, you can isolate either one of the variables and replace it in the second formula, for example:
x+y=48, therefore x=(48-y)
<span>Substitute x in 12x+11.25y=555 and solve for y (to find Dorothy's hours)
</span><span>12(48-y)+11.25y=555
</span>576-12y+11.25y=555
21=0.75y
y=28
        
             
        
        
        
Answer: Joanna will have 275.4 and Zinaya will have 360.
Joanna Equation: 1,530 x .06 = 91.8 
91.8 x 3 = 275.4
Zinaya Equation: 1,500 x .08 = 120
120 x 3 = 360
Hope this helps!!
        
             
        
        
        
Steps to find the equation
1. Find the slope
2. Insert slope into the general equation
3. Find y-intercept
4. Insert -intercept into the equation found in step 2
And you get the equation of the line
----------------------------------------------------------------------------------------------
Find the slope
----------------------------------------------------------------------------------------------
2y - x = 4
----------------------------------------------------------------------------------------------
Rewrite into the form y = mx + c
----------------------------------------------------------------------------------------------
2y = x + 4
y = 1/2 x + 2
Slope = 1/2
Perpendicular slope = -2 (negative reciprocal)
----------------------------------------------------------------------------------------------
Insert slope into the equation
----------------------------------------------------------------------------------------------
y = mx + c
y = -2x + c
----------------------------------------------------------------------------------------------
Find y-intercept
----------------------------------------------------------------------------------------------
y = -2x + c
At point (1, 2)
2 = -2(1) + c
2 = -2 + c
c = 4
----------------------------------------------------------------------------------------------
Insert y-intercept into the equation y = -2x + c
----------------------------------------------------------------------------------------------
y = -2x + 4
----------------------------------------------------------------------------------------------
Answer: y = -2x + 4
----------------------------------------------------------------------------------------------