1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bad White [126]
2 years ago
14

What is 5x + 8x2 + 32x + 17x2​

Mathematics
1 answer:
Vika [28.1K]2 years ago
6 0

Answer:

The answer is 37x + 5.

Step-by-step explanation:

5x + 8*2 + 32x + 17*2

37x + 16 + 34

37x +50

You might be interested in
The formula y = mx + b is called the slope-intercept form of a line. Solve this formula for m
Evgesh-ka [11]

Answer:

m = \frac{y-b}{x}

Step-by-step explanation:

Given

y = mx + b ( subtract b from both sides )

y - b = mx ( divide both sides by x )

\frac{y-b}{x} = m

3 0
3 years ago
Find the increase in price of a single piece of design, when crafts design price is increased by 45% which makes a buyer to buy
Volgvan

Answer: Original price = $43.10, Increase = $19.40, Final price = $62.50

<u>Step-by-step explanation:</u>

Let x represent the original price, then

8x(1.45) < $500

x

x < $43.10

Increase is 0.45x

0.45($43.10)

= $19.40

Final price is Original + Increase

$43.10 + $19.40

= $62.50

8 0
3 years ago
It is estimated that 4,600 people, correct to the
Marina CMI [18]

Answer:

The minimum would be 4,500, and the maximum would be 4,700.

Step-by-step explanation:

If I am not mistaken, you simply need to add or subtract 100 to find the minimum or maximum, as it stated that 4,600 is an estimate that is valid for a range of 100 (up or down).

8 0
3 years ago
If 25% of a number is 12. What is 75% of the number
KIM [24]

Answer:

=900

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Find a solution of x dy dx = y2 − y that passes through the indicated points. (a) (0, 1) y = (b) (0, 0) y = (c) 1 6 , 1 6 y = (d
Leni [432]
Answers: 

(a) y = \frac{1}{1 - Cx}, for any constant C

(b) Solution does not exist

(c) y = \frac{256}{256 - 15x}

(d) y = \frac{64}{64 - 15x}

Explanations:

(a) To solve the differential equation in the problem, we need to manipulate the equation such that the expression that involves y is on the left side of the equation and the expression that involves x is on the right side equation.

Note that

 x\frac{dy}{dx} = y^2 - y&#10;\\&#10;\\ \indent xdy = \left ( y^2 - y \right )dx&#10;\\&#10;\\ \indent \frac{dy}{y^2 - y} = \frac{dx}{x}&#10;\\&#10;\\ \indent \int {\frac{dy}{y^2 - y}} = \int {\frac{dx}{x}} &#10;\\&#10;\\ \indent \boxed{\int {\frac{dy}{y^2 - y}} = \ln x + C_1}      (1)

Now, we need to evaluate the indefinite integral on the left side of equation (1). Note that the denominator y² - y = y(y - 1). So, the denominator can be written as product of two polynomials. In this case, we can solve the indefinite integral using partial fractions.

Using partial fractions:

\frac{1}{y^2 - y} = \frac{1}{y(y - 1)} = \frac{A}{y - 1} + \frac{B}{y}&#10;\\&#10;\\ \indent \Rightarrow \frac{1}{y^2 - y} = \frac{Ay + B(y-1)}{y(y - 1)} &#10;\\&#10;\\ \indent \Rightarrow \boxed{\frac{1}{y^2 - y} = \frac{(A+B)y - B}{y^2 - y} }      (2)

Since equation (2) has the same denominator, the numerator has to be equal. So,

1 = (A+B)y - B&#10;\\&#10;\\ \indent \Rightarrow (A+B)y - B = 0y + 1&#10;\\&#10;\\ \indent \Rightarrow \begin{cases}&#10; A + B = 0&#10;& \text{(3)}\\-B = 1&#10; & \text{(4)}   \end{cases}

Based on equation (4), B = -1. By replacing this value to equation (3), we have

A + B = 0
A + (-1) = 0
A + (-1) + 1 = 0 + 1
A = 1 

Hence, 

\frac{1}{y^2 - y} = \frac{1}{y - 1} - \frac{1}{y}

So,

\int {\frac{dy}{y^2 - y}} = \int {\frac{dy}{y - 1}} - \int {\frac{dy}{y}} &#10;\\&#10;\\ \indent \indent \indent \indent = \ln (y-1) - \ln y&#10;\\&#10;\\ \indent  \boxed{\int {\frac{dy}{y^2 - y}} = \ln \left ( \frac{y-1}{y} \right ) + C_2}

Now, equation (1) becomes

\ln \left ( \frac{y-1}{y} \right ) + C_2 = \ln x + C_1&#10;\\&#10;\\ \indent \ln \left ( \frac{y-1}{y} \right ) = \ln x + C_1 - C_2&#10;\\&#10;\\ \indent  \frac{y-1}{y} = e^{C_1 - C_2}x&#10;\\&#10;\\ \indent  \frac{y-1}{y} = Cx, \text{ where } C = e^{C_1 - C_2}&#10;\\&#10;\\ \indent  1 - \frac{1}{y} = Cx&#10;\\&#10;\\ \indent \frac{1}{y} = 1 - Cx&#10;\\&#10;\\ \indent \boxed{y = \frac{1}{1 - Cx}}&#10;       (5)

At point (0, 1), x = 0, y = 1. Replacing these values in (5), we have

y = \frac{1}{1 - Cx}&#10;\\&#10;\\ \indent 1 = \frac{1}{1 - C(0)} = \frac{1}{1 - 0} = 1&#10;&#10;

Hence, for any constant C, the following solution will pass thru (0, 1):

\boxed{y = \frac{1}{1 - Cx}}

(b) Using equation (5) in problem (a),

y = \frac{1}{1 - Cx}   (6)

for any constant C.

Note that equation (6) is called the general solution. So, we just replace values of x and y in the equation and solve for constant C.

At point (0,0), x = 0, y =0. Then, we replace these values in equation (6) so that 

y = \frac{1}{1 - Cx}&#10;\\&#10;\\ \indent 0 = \frac{1}{1 - C(0)} = \frac{1}{1 - 0} = 1

Note that 0 = 1 is false. Hence, for any constant C, the solution that passes thru (0,0) does not exist.

(c) We use equation (6) in problem (b) and because equation (6) is the general solution, we just need to plug in the value of x and y to the equation and solve for constant C. 

At point (16, 16), x = 16, y = 16 and by replacing these values to the general solution, we have

y = \frac{1}{1 - Cx}&#10;\\&#10;\\ \indent 16 = \frac{1}{1 - C(16)} &#10;\\ &#10;\\ \indent 16 = \frac{1}{1 - 16C}&#10;\\&#10;\\ \indent 16(1 - 16C) = 1&#10;\\ \indent 16 - 256C = 1&#10;\\ \indent - 256C = -15&#10;\\ \indent \boxed{C = \frac{15}{256}}&#10;&#10;&#10;

By replacing this value of C, the general solution becomes

y = \frac{1}{1 - Cx}&#10;\\&#10;\\ \indent y = \frac{1}{1 - \frac{15}{256}x} &#10;\\ &#10;\\ \indent y = \frac{1}{\frac{256 - 15x}{256}}&#10;\\&#10;\\&#10;\\ \indent \boxed{y = \frac{256}{256 - 15x}}&#10;&#10;&#10;&#10;

This solution passes thru (16,16).

(d) We do the following steps that we did in problem (c):
        - Substitute the values of x and y to the general solution.
        - Solve for constant C

At point (4, 16), x = 4, y = 16. First, we replace x and y using these values so that 

y = \frac{1}{1 - Cx} &#10;\\ &#10;\\ \indent 16 = \frac{1}{1 - C(4)} &#10;\\ &#10;\\ \indent 16 = \frac{1}{1 - 4C} &#10;\\ &#10;\\ \indent 16(1 - 4C) = 1 &#10;\\ \indent 16 - 64C = 1 &#10;\\ \indent - 64C = -15 &#10;\\ \indent \boxed{C = \frac{15}{64}}

Now, we replace C using the derived value in the general solution. Then,

y = \frac{1}{1 - Cx} \\ \\ \indent y = \frac{1}{1 - \frac{15}{64}x} \\ \\ \indent y = \frac{1}{\frac{64 - 15x}{64}} \\ \\ \\ \indent \boxed{y = \frac{64}{64 - 15x}}
5 0
3 years ago
Other questions:
  • at the beginning of the year the wrong family car had been driven 14539 miles at the end of the year their car had been driven 2
    9·2 answers
  • Will give 15 points
    9·1 answer
  • What are the 100 digits of pi?
    6·2 answers
  • Eliza falls asleep at 9:35 pm and wakes up 8 hours and 45 miunets later, what time does she wake uo
    9·1 answer
  • A chemist is conducting an experiment which involves a certain chemical reaction. He begins the experiment with 666 milliliters
    15·1 answer
  • A={e,m,w} list subsets
    10·1 answer
  • There is a bag filled with 3 blue and 4 red marbles a marble is taken at random from the bag the colour is noted and then it's r
    7·1 answer
  • Select the expression that represents the multiplicative inverse of -4.
    14·1 answer
  • Don’t get mad just don’t feel like doing this.A car travels 205 miles in 5 hours.calculate the average speed the car was traveli
    9·2 answers
  • Explain why it might be important to be able to work with and manipulate fractions when working in construction.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!