X2+5x=0
7x+0
divide both sides by 7
7 divided by 0 is 0
x=0
0=0
The correct answer it would be is 2,3,4
Answer:
He needs 9 pages
Step-by-step explanation:
8 will be full and 1 will have 2 extra
36 divided by 4
8 with 2 left over so 9 pages
Answer:
J Compound interest; $298.65
Step-by-step explanation:
Interest compounding pays interest on the interest. For the same annual rate, any amount of compounding will earn more interest.
For short time periods, the effect of compounding is not great. In general, it will be a fraction of the equivalent simple interest rate. Here, the effective multiplier for annual compounding is ...
1.051^4 = 1.22024337
and the effective multiplier for simple interest is ...
1 +0.051·4 = 1.204
Then the difference in interest rate multiplier for the 4-year period is ...
1.22024337 -1.204 = 0.01614337
That fraction of the $18500 principal is $298.65.
Compound interest earns $298.65 more than simple interest in this scenario.
Hope this helps, have an amazing day!
Hello there!
An equation to model this situation is 3n - 50 = -11
The unknown number has a value of 13.
Okay, so let's start by breaking down the question - we'll use <em>n</em> to model the unknown number.
-50 added to three times an unknown number equals -11?
This means we are adding -50 to something else. (We can use + -50 or - 50 since they are the same thing, I'll use - 50 since it's easier to follow.)
-50 added to three times an unknown number equals -11?
This phrase can be modeled as 3n. This is what we are taking 50 from, so we can add that to the end of the equation so far.
3n - 50
-50 added to three times an unknown number equals -11?
This can means the equation equals -11. We can model it as = -11. Now, let's add it to our equation.
3n - 50 = -11
Now, solve for n.
You want to start by canceling -50 out on the left side, so n is on it's own side, and to do this you add 50 to both sides.
3n - 50 + 50 = -11 + 50
3n = 39
To finish isolating n, divide both sides of the equation by 3.
3÷3n = 39÷3
n = 13.
I hope this helps and have a great day!