There are three kinds of forces within the atom:
i) Electromagnetic force of attraction between the electrons and protons
ii) Electromagnetic force of repulsion between the protons or weak nuclear force
iii) Strong nuclear force between the electrons and protons
<h3>What is
nuclear force?</h3>
The electromagnetic force of attraction:
- Electrons circle in the orbits above the nucleus. There exists an electromagnetic force of pull between the electrons and protons. That’s why electrons do not depart the atom.
Weak nuclear force:
- It is an electromagnetic significance of revulsion between the protons in the nucleus of the atoms.
Strong nuclear force:
- This force is strongest from all the fundamental details and exists between the protons and neutrons in the nucleus of an atom. This pressure overcomes the weak nuclear force and does not allow protons to stray out.
To learn more about nuclear force, refer to:
brainly.com/question/8695581
#SPJ4
Answer:
113 miles
Explanation:
45.00 x 2.50= 1.12.5 so 113 miles in 2.50 hours
Answer:
Net force required to accelerate the car is 6000 N
Explanation:
Force is calculated by the equation, F = Mass × Acceleration
This is based on Newton's Second Law of Motion which states that the force acting on an object is its mass times the acceleration of the object.
Here, mass = 3000 kg and acceleration = 2 m/s²
⇒ Force = Mass × Acceleration
= 3000 × 2 = 6000 N
⇒ F = 6000 N
⇒ M = 3000 kg
⇒ a = 2 m/s²
Answer:
a) v = 0.4799 m / s, b) K₀ = 1600.92 J, K_f = 5.46 J
Explanation:
a) How the two players collide this is a momentum conservation exercise. Let's define a system formed by the two players, so that the forces during the collision are internal and also the system is isolated, so the moment is conserved.
Initial instant. Before the crash
p₀ = m v₁ + M v₂
where m = 95 kg and his velocity is v₁ = -3.75 m / s, the other player's data is M = 111 kg with velocity v₂ = 4.10 m / s, we have selected the direction of this player as positive
Final moment. After the crash
p_f = (m + M) v
as the system is isolated, the moment is preserved
p₀ = p_f
m v₁ + M v₂ = (m + M) v
v =
let's calculate
v =
v = 0.4799 m / s
b) let's find the initial kinetic energy of the system
K₀ = ½ m v1 ^ 2 + ½ M v2 ^ 2
K₀ = ½ 95 3.75 ^ 2 + ½ 111 4.10 ^ 2
K₀ = 1600.92 J
the final kinetic energy
K_f = ½ (m + M) v ^ 2
k_f = ½ (95 + 111) 0.4799 ^ 2
K_f = 5.46 J
Answer:
-65.6 m is the answer.
Explanation:
Brainly deleted my answer even though you got it correct, so this is just a repost.