Answer:
a) Δφ = 1.51 rad
, b) x = 21.17 m
Explanation:
This is an interference problem, as they indicate that the distance AP is on the x-axis the antennas must be on the y-axis, the phase difference is
Δr /λ = Δfi / 2π
Δfi = Δr /λ 2π
Δr = r₂-r₁
let's look the distances
r₁ = 57.0 m
We use Pythagoras' theorem for the other distance
r₂ = √ (x² + y²)
r₂ = √(57² + 9.3²)
r₂ = 57.75 m
The difference is
Δr = 57.75 - 57.0
Δr = 0.75 m
Let's look for the wavelength
c = λ f
λ = c / f
λ = 3 10⁸ / 96.0 10⁶
λ = 3.12 m
Let's calculate
Δφ = 0.75 / 3.12 2π
Δφ = 1.51 rad
b) for destructive interference the path difference must be λ/2, the equation for destructive interference with φ = π remains
Δr = (2n + 1) λ / 2
For the first interference n = 0
Δr = λ / 2
Δr = r₂ - r₁
We substitute the values
√ (x² + y²) - x = 3.12 / 2
Let's solve for distance x
√ (x² + y²) = 1.56 + x
x² + y² = (1.56 + x)²
x² + y² = 1.56² + 2 1.56 x + x²
y2 = 20.4336 +3.12 x
x = (y² -20.4336) /3.12
x = (9.3² -20.4336) /3.12
x = 21.17 m
This is the distance for the first minimum
Answer:
proton and neutrons
Explanation:
electron has negligible mass
Answer:
ZAMN ZAMN ZAMN ZAMN ZAMN ZAMN ZAMN ZAMN ZAMN ZAMN ZAMN ZAMN ZAMN ZAMN ZAMN ZAMN ZAMN ZAMN ZAMN
Explanation:
Answer:
Part a)
T = 0.52 s
Part b)

Part c)

Explanation:
As we know that the particle move from its maximum displacement to its mean position in t = 0.13 s
so total time period of the particle is given as

now we have
Part a)
T = time to complete one oscillation
so here it will move to and fro for one complete oscillation
so T = 0.52 s
Part b)
As we know that frequency and time period related to each other as



Part c)
As we know that
wavelength = 1.9 m
frequency = 1.92 Hz
so wave speed is given as



Answer:
A. chemical substance whose atoms all have the same number of protons
Explanation:
An element is a substance which contains identical atoms that have the same number of protons in the nucleus.
Elements are arranged in the periodic table according to their atomic number (= number of protons): so atoms of different elements have a different number of protons in their nuclei.
For a neutral atom, the number of electrons around the nucleus is also equal to the number of protons.
Moreover, atoms of the same element can have a different number of neutrons, despite having the same number of protons - these atoms are called isotopes.