Answer:
a. 1.2
b. 0.83
c. 17 min
Step-by-step explanation:
Given:
ΔONP and ΔMNL.
To find:
The method and additional information that will prove ΔONP and ΔMNL similar by the AA similarity postulate?
Solution:
According to AA similarity postulate, two triangles are similar if their two corresponding angles are congruent.
In ΔONP and ΔMNL,
(Vertically opposite angles)
To prove ΔONP and ΔMNL similar by the AA similarity postulate, we need one more pair of corresponding congruent angles.
Using a rigid transformation, we can prove

Since two corresponding angles are congruent in ΔONP and ΔMNL, therefore,
(AA postulate)
Therefore, the correct option is A.
<h2>
Hello!</h2>
The answer is: 
<h2>
Why?</h2>
Domain and range of trigonometric functions are already calculated, so let's discard one by one in order to find the correct answer.
The range is where the function can exist in the vertical axis when we assign values to the variable.
First:
: Incorrect, it does include 0.4 since the cosine range goes from -1 to 1 (-1 ≤ y ≤ 1)
Second:
: Incorrect, it also does include 0.4 since the cotangent range goes from is all the real numbers.
Third:
: Correct, the cosecant function is all the real numbers without the numbers included between -1 and 1 (y≤-1 or y≥1).
Fourth:
: Incorrect, the sine function range is equal to the cosine function range (-1 ≤ y ≤ 1).
I attached a pic of the csc function graphic where you can verify the answer!
Have a nice day!
Twelve and one hundred sixty-five thousandths