Because the airplane flies at 800 km/h, it will fly 800 km in 1 hour. In order to find how far it travels in 2 hours, we multiply this number by 2. 800*2 = 1600, so the plane will travel 1600 km in 2 hours.
Answer:
p = 4000 kg-m/s
Explanation:
Given that,
The mass of a truck, m = 200 kg
Speed of the truck, v = 20 m/s
We need to find the momentum of the truck. The formula for momentum is given by :
p = mv
so,

So, the momentum of the truck is equal to 4000 kg-m/s.
The final speed of an airplane is v = 92.95 m/s
The rate of change of position of an object in any direction is known as speed i.e. in other word, Speed is measured as the ratio of distance to the time in which the distance was covered.
Solution-
Here given,
Acceleration a= 10.8 m/s2 .
Displacement (s)= 400m
Then to find final speed of airplane v=?
Therefore from equation of motion can be written as,
v²=u²+ 2as
where, u is initial speed, v is final speed ,a is acceleration and s is displacement of the airplane. Therefore by putting the value of a & s in above equation and (u =0) i.e. the initial speed of airplane is zero.
v²= 2×10.8 m/s²×400m
v²=8640m/s
v=92.95m/s
hence the final speed of airplane v =92.95m/s
To know more about speed
brainly.com/question/13489483
#SPJ4
Answer:
magnitude of the frictional torque is 0.11 Nm
Explanation:
Moment of inertia I = 0.33 kg⋅m2
Initial angular velocity w° = 0.69 rev/s = 2 x 3.142 x 0.69 = 4.34 rad/s
Final angular velocity w = 0 (since it stops)
Time t = 13 secs
Using w = w° + §t
Where § is angular acceleration
O = 4.34 + 13§
§ = -4.34/13 = -0.33 rad/s2
The negative sign implies it's a negative acceleration.
Frictional torque that brought it to rest must be equal to the original torque.
Torqu = I x §
T = 0.33 x 0.33 = 0.11 Nm