Answer:
2x + 5 = l
Step-by-step explanation:
V = lwh
2x^3 + 17x^2 + 46x + 40 = l(x + 4)(x + 2)
2x^3 + 12x^2 + 16x + 5x^2 + 30x + 40 = l(x + 4)(x + 2)
2x(x^2) + 2x(6x) + 2x(8) + 5(x^2) + 5(6x) + 5(8) = l(x + 4)(x + 2)
2x(x^2 + 6x + 8) + 5(x^2 + 6x + 8) = l(x + 4)(x + 2)
(2x + 5)(x^2 + 6x + 8) = l(x + 4)(x + 2)
(2x + 5)(x^2 + 2x + 4x + 8) = l(x + 4)(x + 2)
(2x + 5)(x)(x) + x(2) + 4(x) + 4(2)) = l(x + 4)(x + 2)
(2x + 5)(x(x + 2) + 4(x + 2)) = l(x + 4)(x + 2)
(2x + 5)(x + 4) + 4(x + 2) = l(x + 4)(x + 2)
(x + 4)(x + 2) (x + 4)(x + 2)
2x + 5 = l