I think it’s because they are opposite so Yh sos if it’s wrong
Step-by-step explanation:
(a)
Using the definition given from the problem
![f(A) = \{x^2 \, : \, x \in [0,2]\} = [0,4]\\f(B) = \{x^2 \, : \, x \in [1,4]\} = [1,16]\\f(A) \cap f(B) = [1,4] = f(A \cap B)\\](https://tex.z-dn.net/?f=f%28A%29%20%3D%20%5C%7Bx%5E2%20%20%5C%2C%20%3A%20%5C%2C%20x%20%5Cin%20%5B0%2C2%5D%5C%7D%20%3D%20%5B0%2C4%5D%5C%5Cf%28B%29%20%3D%20%5C%7Bx%5E2%20%20%5C%2C%20%3A%20%5C%2C%20x%20%5Cin%20%5B1%2C4%5D%5C%7D%20%3D%20%5B1%2C16%5D%5C%5Cf%28A%29%20%5Ccap%20f%28B%29%20%3D%20%5B1%2C4%5D%20%20%3D%20f%28A%20%5Ccap%20B%29%5C%5C)
Therefore it is true for intersection. Now for union, we have that
![A \cup B = [0,4]\\f(A\cup B ) = [0,16]\\f(A) = [0,4]\\f(B)= [1,16]\\f(A) \cup f(B) = [0,16]](https://tex.z-dn.net/?f=A%20%5Ccup%20B%20%3D%20%5B0%2C4%5D%5C%5Cf%28A%5Ccup%20B%20%29%20%3D%20%5B0%2C16%5D%5C%5Cf%28A%29%20%3D%20%5B0%2C4%5D%5C%5Cf%28B%29%3D%20%5B1%2C16%5D%5C%5Cf%28A%29%20%5Ccup%20f%28B%29%20%3D%20%5B0%2C16%5D)
Therefore, for this case, it would be true that
.
(b)
1 is not a set.
(c)
To begin with

Therefore

Now, given an element of
it will belong to both sets, therefore it also belongs to
, and you would have that
, therefore
.
(d)
To begin with
, therefore

Answer: it’s A and D
Step-by-step explanation:
5x - 18 + x = 90
6x = 108
x = 18 degrees
Answers:
- C) x = plus/minus 11
- B) No real solutions
- C) Two solutions
- A) One solution
- The value <u> 18 </u> goes in the first blank. The value <u> 17 </u> goes in the second blank.
========================================================
Explanations:
- Note how (11)^2 = (11)*(11) = 121 and also (-11)^2 = (-11)*(-11) = 121. The two negatives multiply to a positive. So that's why the solution is x = plus/minus 11. The plus minus breaks down into the two equations x = 11 or x = -11.
- There are no real solutions here because the left hand side can never be negative, no matter what real number you pick for x. As mentioned in problem 1, squaring -11 leads to a positive number 121. The same idea applies here as well.
- The two solutions are x = 0 and x = -2. We set each factor equal to zero through the zero product property. Then we solve each equation for x. The x+2 = 0 leads to x = -2.
- We use the zero product property here as well. We have a repeated factor, so we're only solving one equation and that is x-3 = 0 which leads to x = 3. The only root is x = 3.
- Apply the FOIL rule on (x+1)(x+17) to end up with x^2+17x+1x+17 which simplifies fully to x^2+18x+17. The middle x coefficient is 18, while the constant term is 17.