46 - 16/2 x 4 =
46 - 8 x 4 =
46 - 32 =
14 <==
Answer:
V≈278.85
Step-by-step explanation:
AB=s(s﹣a)(s﹣b)(s﹣c)
V=ABh
s=a+b+c
2
Solving forV
V=1
4h﹣a4+2(ab)2+2(ac)2﹣b4+2(bc)2﹣c4=1
4·8·﹣64+2·(6·12)2+2·(6·12)2﹣124+2·(12·12)2﹣124≈278.8548
I think it's true but I'm not 100% sure
Answer:
4
Step-by-step explanation:
Firstly simplify your brackets...,
; 4(a^2 + 2b) = 4a^2 + 8b...then substitute it onto the bracket
; 4a^2 + 8b - 2b
; 4a^2 + 6b....,then substitute with the given values of a and b
; 4(2)^2)+ 6(-2)
; 16 - 12 = 4
Answer:
Step-by-step explanation:
A(1) = 9
A(n+1) = A(n) - 5
n = 1 ; A(1+1) = A(1) - 5
A(2) = 9 - 5
A(2) = 4
n = 2 ; A(2+1) = A(2) - 5
A(3) = 4 - 5
A(3) = 1
n = 3 ; A(3+1) = A(3) - 5
A(4) = 1 - 5
A(4) = -4
n = 4 ; A(4+1) = A(4) - 5
A(5) = -4 - 5
A(5) = -9
First four terms are: 9 , 4 , 1 , -4 , - 9