Find the volume of the solid of revolution generated by revolving the region bounded by y = 2x^2, y = 0, and x = 2 about the x-a
xis.
1 answer:
Answer:
![128 \pi/5 units^3](https://tex.z-dn.net/?f=128%20%5Cpi%2F5%20units%5E3)
Step-by-step explanation:
The volume of the solid revolution is expressed as;
![V = \int\limits^2_0 {\pi y^2} \, dx](https://tex.z-dn.net/?f=V%20%3D%20%5Cint%5Climits%5E2_0%20%7B%5Cpi%20y%5E2%7D%20%5C%2C%20dx)
Given y = 2x²
y² = (2x²)²
y² = 4x⁴
Substitute into the formula
![V = \int\limits^2_0 {4\pi x^4} \, dx\\V =4\pi \int\limits^2_0 { x^4} \, dx\\V = 4 \pi [\frac{x^5}{5} ]\\](https://tex.z-dn.net/?f=V%20%3D%20%5Cint%5Climits%5E2_0%20%7B4%5Cpi%20x%5E4%7D%20%5C%2C%20dx%5C%5CV%20%3D4%5Cpi%20%5Cint%5Climits%5E2_0%20%7B%20x%5E4%7D%20%5C%2C%20dx%5C%5CV%20%3D%204%20%5Cpi%20%5B%5Cfrac%7Bx%5E5%7D%7B5%7D%20%5D%5C%5C)
Substituting the limits
![V = 4 \pi ([\frac{2^5}{5}] - [\frac{0^5}{5}])\\V = 4 \pi ([\frac{32}{5}] - 0)\\V = 128 \pi/5 units^3](https://tex.z-dn.net/?f=V%20%3D%204%20%5Cpi%20%28%5B%5Cfrac%7B2%5E5%7D%7B5%7D%5D%20-%20%5B%5Cfrac%7B0%5E5%7D%7B5%7D%5D%29%5C%5CV%20%3D%204%20%5Cpi%20%28%5B%5Cfrac%7B32%7D%7B5%7D%5D%20-%200%29%5C%5CV%20%3D%20128%20%5Cpi%2F5%20units%5E3)
Hence the volume of the solid is ![128 \pi/5 units^3](https://tex.z-dn.net/?f=128%20%5Cpi%2F5%20units%5E3)
You might be interested in
Answer:
8
Step-by-step explanation:
Doubling every 3 years, meaning 200% every 3 years.
![1600 \div 200 = 8](https://tex.z-dn.net/?f=1600%20%5Cdiv%20200%20%3D%208)
![8 \times 3 = 24](https://tex.z-dn.net/?f=8%20%5Ctimes%203%20%3D%2024)
The answer is 24 years.
Hope this helps. - M
Answer:
14 miles
Step-by-step explanation:
Answer:
I think the answer is f' (x)=v
Answer:
36
Step-by-step explanation: