You can convert (1/625) to an exponent, and it would be ideal to have 5 as the base of it because you want your log base to cancel it out. what i usually do in this case is just test out 5^1, 5^2, etc until i find one that matches the number i need. in this case because the number you're trying to work with is a small fraction, you'll want to use NEGATIVE exponents so it'll create a fraction instead of a large whole number:
5^-1 = 1/5
. . . keep trying those. . .
5^-4 = 1/625
so, because they're equal to one another, it'll be waaay easier after you substitute 5^-4 in place of 1/625
x = log₅ 5⁻⁴
log base 5 of 5 simplifies to 1. subbing in the 5^-4 gets rid of the log for you altogether, and your -4 exponent drops down:
x = -4 is your answer
if the exponent dropping down doesn't make sense to you, you can think of it in another way:
x = log₅ 5⁻⁴
expand the expression so that the exponent moves in front of the log function:
x = (-4) log₅ 5
then, still, log base 5 of 5 simplifies to 1, so you're left with:
x = (-4)1 or x = -4
9514 1404 393
Answer:
(a) 2/100
Step-by-step explanation:
To determine the value of a digit, set all other digits to zero. Your digit has a value of ...
0.020 . . . two hundredths = 2/100
Answer:
En una semana gastará 705,6 litros.
Step-by-step explanation:
Con la información proporcionada, puedes calcular cuánta agua gastará por día usando una regla de tres teniendo en cuenta que un día tiene 24 horas y estas equivalen a 1440 minutos. Además, puedes convertir los 700 ml a litros, considerando que 1 litro son 1000 mL, lo que significa que los 700 mL equivalen a 700/1000=0,7 Litros.
10 min → 0,7 L
1440 min → x
x=(1440*0,7)/10
x=100,8 L
Ahora que conoces la cantidad de agua que gastará por día, puedes multiplicar esta cantidad por 7 que es el número de días en una semana:
100,8*7=705,6 L
De acuerdo a esto, la respuesta es que en una semana gastará 705,6 litros.