Answer:
I think it's -11/6
Step-by-step explanation:
just guessingggg
The coordinates of triangle U'V'W' include U'(8, 3), V'(4, -8) and W'(-8, -6) and this is represented by graph A shown in the image attached below.
<h3>What is a transformation?</h3>
A transformation can be defined as the movement of a point on a cartesian coordinate from its original (initial) position to a new location.
<h3>The types of transformation.</h3>
In Geometry, there are different types of transformation and these include the following:
Based on the information provided, triangle UVW would be rotated counterclockwise through an angle of 270 degree at origin to produce triangle U'V'W', we have:
![\left[\begin{array}{ccc}0&1\\-1&0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%261%5C%5C-1%260%5Cend%7Barray%7D%5Cright%5D)
Therefore, the image of triangle UVW would be given by this matrix:
![\left[\begin{array}{ccc}-3&8&6\\8&4&-8\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-3%268%266%5C%5C8%264%26-8%5Cend%7Barray%7D%5Cright%5D)
Image = ![\left[\begin{array}{ccc}8&4&-8\\3&-8&-6\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%264%26-8%5C%5C3%26-8%26-6%5Cend%7Barray%7D%5Cright%5D)
Based on the image above, we can logically deduce that the coordinates of triangle U'V'W' include U'(8, 3), V'(4, -8) and W'(-8, -6) and this is represented by graph A shown in the image attached below.
Read more on transformations here: brainly.com/question/12518192
#SPJ1
Answer:
3y √21 + 2 y√15
Step-by-step explanation:
To simply, we open up the bracket
We have this as;
√(189y^2) + √60y
= 3y √21 + 2 y√15
Not sure if there're any answer choices of some sort,
but if the angle a and angle b are supplementary, that means when you add their measures together they must equal 180.
Answer:
5/6
Step-by-step explanation:
You only have 5 dog treats and there's 6 dogs, you have to divide the 5 dog treats among the 6 dogs so the 5 goes on the top, because that's what you're dividing.