If the probability of drawing a red card is 3/10, then if we take this fom a whole, 10/10, we can find the probability of not choosing a red card.
10/10-3/10=7/10
The probability of not drawing a red card is 7/10 or 70%.
C) (0.85 + x/100)(250+145) does not give the correct answer.
Explanation
A) works; adding the two costs together is 250+145=395. We multiply this by 0.85 because 100%-15%=85%=0.85. We also have x% tax, which is represented by x/100, added to 100% of the value, or 1.00. Altogether this gives us
395(0.85)(1+x/100) = 395(0.85 + (0.85x/100)) = 395(0.85) + 395(0.85x/100)
= 395(0.85) + 395(0.0085x)
B) works; we have 250+145 for the original price; we have 85% = 0.85 of the value; we also have 100% + x%, which is (100+x)/100.
C) does not work; (0.85+x/100)(395) does not take into consideration that you are finding the tax after taking the 85%. This will simplify out to
0.85*395 + (x/100)(395) = 335.75 + 395x/100 = 335.75 + 3.95x, which is too much.
D) works; simplifying the expression from A, we have 395(0.85) + 395(0.0085x) = 335.75 + 3.3575x.
Answer:
0.3157
Step-by-step explanation:
Given that according to a certain news poll, 71% agreed that it should be the government's responsibility to provide a decent standard of living for the elderly,
Let A be the event that it should be the government's responsibility to provide a decent standard of living for the elderly, and B the event that it would be a good idea to invest part of their Social Security taxes on their own
P(B) = 41%=0.41
A and B are independent
Hence P(both)=
the probability that a person agreed with both propositions
= Probability for both A and B
= P(A) P(B) since A and B are independent
= 0.3157
Answer:
70 is the answer for this question