Answer:
Explanation:
Force on a moving charge is given by the following relation
F = q ( v x B )
for proton
q = e , v = vi , B = Bk
F = e ( vi x Bk )
= Bev - j
= - Bevj
The direction of force is along negative of y axis or -y - axis.
for electron
q = - e , v = vi , B = Bk
F = - e ( vi x Bk )
= - Bev - j
= Bevj
The direction of force is along positive of y axis or + y - axis.
It's hard to tell exactly what's happening in that 110 cm that you marked over the wave. What is under the ends of the long arrow ? How many complete waves ? I counted 4.5 complete waves ... maybe ?
If there are 4.5 complete waves in 110cm, then the length of 1 wave is (110/4.5)=24.44cm.
Frequency = speed/wavelength
Frequency = 2m/s /0.2444m
Frequency = 8.18 Hz
Answer:
The correct option is;
Absolute zero
Explanation:
A Bose-Einstein condensate is known as the fifth state of matter which is made of a collection of ultra cooled atoms (at almost absolute zero degrees -273.15 °C) such that the there is very slight free energy within the atoms which results in almost no relative motion between the atoms. The atoms then combine forming clumps such that phenomena usually observed at the microscopic level such as wavefunction interference become observable at the microscopic level.
Answer: Option C) 9.63 joules
Explanation:
Mass of object = 8.8kg
Speed of object = ?
Kinetic energy = ?
Momentum of the object = 13 kgm/s
Recall that momentum is a product of mass M and speed V of a moving object.
Thus, Momentum = Mass x Speed
13 kgm/s = 8.8kg x V
V = (13kgm/s ➗ 8.8kg)
V = 1.48 m/s
Now, that the speed of the object is known, calculate its kinetic energy. And, its kinetic energy depends on its mass M and speed, V
Thus, Kinetic energy = 1/2 x mv^2
= 1/2 x 8.8kg x (1.48m/s)^2
= 0.5 x 8.8kg x (1.48m/s)^2
= 4.4 x (1.48m/s)^2
= 9.63 joules
Thus, the kinetic energy of the object is
9.63 joules
Answer: 1,350cm³
Explanation:
Volume = LWH
= 30 × 15 × 3 = <u>1</u>,<u>350cm</u>³