Answer:
<em>Choice B. 16 feet.</em>
<em>The height of the tree is 16 ft</em>
Step-by-step explanation:
<u>Similar Triangles</u>
Similar triangles have their corresponding side lengths proportional by a fixed scale factor.
We are given the drawings of a tree and a wall and it's assumed both triangles are similar. We need to find the scale factor and find the height of the tree.
Comparing the corresponding distances from the viewer to the base of the tree and the base of the wall, we can calculate the scale factor as 24/6=4.
Applying the same factor to the height of the model, we get the height of the tree is 4*4 = 16 ft.
Choice B. 16 feet
The height of the tree is 16 ft
Tons would be 0.125
and Kg would be 113.636
The absolute value parent function.
Answer:
Angle A must be acute.
Explanation:
Both angle A and C must be acute. The sum of the angles in a triangle is 180°.
An obtuse angle is more than 90°, so the sum of the remaining 2 angles has to be less than 90°.
Note that it is impossible to have:
<span>2 right angles in a triangle, because <span>90°+90°=180</span>° and the third angle still needs to be added.1 obtuse and 1 right angle in a triangle, their sum is more than 180°2 obtuse angles in a triangle, their sum is more than 180°</span>
It is possible to have an obtuse-angled isosceles triangle, but the vertex angle must be obtuse and the equal base angles will be acute.