Answer:
Amount of heat energy released by light bulb = 25 joules
Explanation:
Given:
Energy receive by light bulb = 100 Joules
Energy released by light bulb as light energy = 75 Joules
Find:
Amount of heat energy released by light bulb
Computation:
We know that, energy is neither be created nor destroys
So,
Using Law of conservation of energy
Energy receive by light bulb = Energy released by light bulb as light energy + Amount of heat energy released by light bulb
100 = 75 + Amount of heat energy released by light bulb
Amount of heat energy released by light bulb = 100 - 75
Amount of heat energy released by light bulb = 25 joules
The law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as system's mass cannot change, so quantity cannot be added nor removed. Hence, the quantity of mass is conserved over time.
The law implies that mass can neither be created nor destroyed, although it may be rearranged in space, or the entities associated with it may be changed in form. For example, in chemical reactions, the mass of the chemical components before the reaction is equal to the mass of the components after the reaction. Thus, during any chemical reaction and low-energy thermodynamic processes in an isolated system, the total mass of the reactants, or starting materials, must be equal to the mass of the products.
According to the Law of Conservation, all atoms of the reactant(s) must equal the atoms of the product(s).
As a result, we need to balance chemical equations. We do this by adding in coefficients to the reactants and/or products. The compound(s) itself/themselves DOES NOT CHANGE.
In order to help the
student expand his/her knowledge I will help answer the question. This in hope
that the student will get a piece of knowledge that will help him/her through his/her homework or future tests. The ________ have a single electron in the highest
occupied energy level. The missing word to complete this statement and make it
true is Alkali Metals.
<span>
I hope it helps,
Regards.</span>
Answer:
If each element can be identified by its spectrum then the composition of an unknown star can be determined
Explanation:
The chemical nature of the elements is that they absorb specific wavelength of light depending on their atom. By spectral analysis of the spectrum of emitted light by a body, the body's composition can therefore be determined. As such in order to determine the composition of distant bodies such as planets, stars and other celestial bodies scientists usually make use of spectroscopy.