Shelter, you need a place to live
Answer:
B. 111 J
Explanation:
The change in internal energy is the sum of the heat absorbed and the work done on the system:
ΔU = Q + W
At constant pressure, work is:
W = P ΔV
Given:
P = 0.5 atm = 50662.5 Pa
ΔV = 4 L − 2L = 2 L = 0.002 m³
Plugging in:
W = (50662.5 Pa) (0.002 m³)
W = 101.325 J
Therefore:
ΔU = 10 J + 101.325 J
ΔU = 111.325 J
Rounded to three significant figures, the change in internal energy is 111 J.
Answer:
Knowledge of facts
Explanation:
All of these are inherited traits: Color, Height, and Shape
but Knowledge is a learnt trait
Answer:
Speed is measured over time.
Explanation:
Answer:
pH = 2.69
Explanation:
The complete question is:<em> An analytical chemist is titrating 182.2 mL of a 1.200 M solution of nitrous acid (HNO2) with a solution of 0.8400 M KOH. The pKa of nitrous acid is 3.35. Calculate the pH of the acid solution after the chemist has added 46.44 mL of the KOH solution to it.</em>
<em />
The reaction of HNO₂ with KOH is:
HNO₂ + KOH → NO₂⁻ + H₂O + K⁺
Moles of HNO₂ and KOH that react are:
HNO₂ = 0.1822L × (1.200mol / L) = <em>0.21864 moles HNO₂</em>
KOH = 0.04644L × (0.8400mol / L) = <em>0.0390 moles KOH</em>
That means after the reaction, moles of HNO₂ and NO₂⁻ after the reaction are:
NO₂⁻ = 0.03900 moles KOH = moles NO₂⁻
HNO₂ = 0.21864 moles HNO₂ - 0.03900 moles = 0.17964 moles HNO₂
It is possible to find the pH of this buffer (<em>Mixture of a weak acid, HNO₂ with the conjugate base, NO₂⁻), </em>using H-H equation for this system:
pH = pKa + log₁₀ [NO₂⁻] / [HNO₂]
pH = 3.35 + log₁₀ [0.03900mol] / [0.17964mol]
<h3>pH = 2.69</h3>