Answer:
1.78 × 10²⁶ Atoms
Explanation:
Relation between number of molecules and moles is,
No. of Molecules = Moles × 6.022 × 10²³ Molecules/mol
No. of Molecules = 99 mol × 6.022 × 10²³ Molecules/mol
No. of Molecules = 5.96 × 10²⁵ Molecules
Also, In CO₂ Molecule there are 3 atoms.
So,
No. of atoms = 5.96 × 10²⁵ Molecules × 3
No. of atoms = 1.78 × 10²⁶ Atoms
Suppose 110.0 mL of hydrogen gas at STP combines with a stoichiometric amount of fluorine gas and the resulting hydrogen fluoride dissolves in water to form 150.0 mL of an aqueous solution. 0.032 M is the concentration of the resulting hydrofluoric acid.
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
Now write the balanced chemical equation
H₂ + F₂ → 2HF
<h3>What is Ideal Gas ?</h3>
An ideal gas is a gas that obey gas laws at all temperature and pressure conditions. It have velocity and mass but do not have volume. Ideal gas is also called perfect gas. Ideal gas is a hypothetical gas.
It is expressed as:
PV = nRT
where,
P = Pressure
V = Volume
n = number of moles
R = Ideal gas constant
T = temperature
Here,
P = 1 atm [At STP]
V = 110 ml = 0.11 L
T = 273 K [At STP]
R = 0.0821 [Ideal gas constant]
Now put the values in above expression
PV = nRT
1 atm × 0.11 L = n × 0.0821 L.atm/ K. mol × 273 K
![n = \frac{1\ \text{atm} \times 0.11\ L}{0.0821\ \text{L. atm/ K. mol} \times 273\ K}](https://tex.z-dn.net/?f=n%20%3D%20%5Cfrac%7B1%5C%20%5Ctext%7Batm%7D%20%5Ctimes%200.11%5C%20L%7D%7B0.0821%5C%20%5Ctext%7BL.%20atm%2F%20K.%20mol%7D%20%5Ctimes%20273%5C%20K%7D)
n = 0.0049 mol
<h3>How to find the concentration of resulting solution ? </h3>
To calculate the concentration of resulting solution use the expression
![C = \frac{n}{V}](https://tex.z-dn.net/?f=C%20%3D%20%5Cfrac%7Bn%7D%7BV%7D)
= 0.032 M
Thus from the above conclusion we can say that Suppose 110.0 mL of hydrogen gas at STP combines with a stoichiometric amount of fluorine gas and the resulting hydrogen fluoride dissolves in water to form 150.0 mL of an aqueous solution. 0.032 M is the concentration of the resulting hydrofluoric acid.
Learn more about the Ideal Gas here: brainly.com/question/25290815
#SPJ4
Answer:
d an acid - base reaction.
Explanation:
Answer:
I believe it the Data Table
Explanation:
because that the final step of an experiment; recording your data throughout the experiment, and that where you recorded your steps and information throughout the experiment.
8 moles of H 2O are produced.
First, we need to figure out the chemical equation for producing water with oxygen which is H 2 + O2 = H 2O. Then, we need to balance the equation, resulting in 2H 2 + O2 = 2H 2O.
<h3>How many moles of H2 are required to make one mole of NH3?</h3>
Calculate 0.88074 mol H2's mass. If N2 is too much, 1.776 g H2 is needed to create 10.00 g of NH3. To create 8.2 moles of ammonia, 2 moles of NH3 are created when 1 mole of N2 and 3 moles of H2 mix. 4.1 moles of N2 Fast are consequently needed to make 8.2 moles of NH3.
<h3>
How many moles of h2 are needed to produce a solution?</h3>
An O-H bond has a bond energy of 1 09 Kcal. 3.6. A 38.0mL 0.026M HCl solution and a 0.032M NaOH solution react. Thus, 10 moles of NH 3 are obtained by dividing 15 moles of H2 by the 1.5 moles of H2 required for the product. and 9.3 x 10-3 moles of bromobutane (1.27/137 =.00927moles).
Learn more about H2O:
brainly.com/question/2193704
#SPJ4