<span>((x+deltaX)^2+x+deltaX-(x^2+x))/deltaX = (x^2 + 2x delta x + (delta x)^2 + x + delta x - x^2 - x) / delta x = delta x (2x + delta x + 1) / delta x = 2x + delta x + 1
Therefore, </span>Lim as x tends to 0 of <span>((x + delta X)^2 + x + deltaX - (x^2 + x)) / deltaX</span> = 1 + delta x
Answer: 197.292
Step-by-step explanation:
let L = length and let W = width.
Use the equations 2L + 2W = 2750
and L = 5W + 15
Then do the steps as follows -
1. Plug the equation for what L equals into the first equation
2(5W+15) + 2W = 2750
2. Then distribute the 2
10W + 30 + 2W = 2750
3. Then add like terms
12W + 30 = 2750
4. Then subtract 30 from both sides
12W = 2720
5. Divide by 12 on both sides
W = 226.67
6. Then plug that into the second equation
L = 5(226.67) + 15
L = 1148.35 should be the answer
The answer is inconsistent
96 sq units and 460 pi cm2