1. Nintendo
2. A. True
3. A. Oscilloscope
Answer:

Step-by-step explanation:
the mean is given by:

In our case this is:

side note: the main difference between sample mean and population mean is in the 'context'. However, the method to calculate them is the same.
By context I mean: if this the items are taken from some larger category for example: the ages of a few 'students' from a 'class'. Here 'students' are the sample from a larger set that is 'class'. The mean of the 'few students' will be called sample mean. In contrast, if we take the mean of the ages of the whole class then this is called population mean. (population mean == mean of the whole set)
In our case we aren't told exactly where these numbers come from, is this the whole set or a sample from it, the lack of context allows us to assume that the mean can either be population mean or sample mean. So we can safely use any symbol
or
.
Answer:
On occasions you will come across two or more unknown quantities, and two or more equations
relating them. These are called simultaneous equations and when asked to solve them you
must find values of the unknowns which satisfy all the given equations at the same time.
Step-by-step explanation:
1. The solution of a pair of simultaneous equations
The solution of the pair of simultaneous equations
3x + 2y = 36, and 5x + 4y = 64
is x = 8 and y = 6. This is easily verified by substituting these values into the left-hand sides
to obtain the values on the right. So x = 8, y = 6 satisfy the simultaneous equations.
2. Solving a pair of simultaneous equations
There are many ways of solving simultaneous equations. Perhaps the simplest way is elimination. This is a process which involves removing or eliminating one of the unknowns to leave a
single equation which involves the other unknown. The method is best illustrated by example.
Example
Solve the simultaneous equations 3x + 2y = 36 (1)
5x + 4y = 64 (2) .
Solution
Notice that if we multiply both sides of the first equation by 2 we obtain an equivalent equation
6x + 4y = 72 (3)
Now, if equation (2) is subtracted from equation (3) the terms involving y will be eliminated:
6x + 4y = 72 − (3)
5x + 4y = 64 (2)
x + 0y = 8
The computation shows that the number of pages is 320.
The number of pages read in this second day will be 120.
<h3>How to illustrate the information?</h3>
Fraction read on first day = 1/4
Fraction news on second day = 1/2 × 3/4 = 3/8
Fraction read on last day = 1 - (1/4 + 3/8) =3/8
The number of pages that the book has will be:
= 3/8 × x = 120
0.375x = 120
x = 120/0.375
x = 320
The number of pages is 320.
b. The number of pages read on this second day will be:
= 3/8 × 320
= 120
Learn more about computations on:
brainly.com/question/4658834
#SPJ1