Answer:
I. m = 2401
II. ((n+1) ∆ y)/n = 1/n[(n – y + 2)(n – y) + 1]
Step-by-step explanation:
I. Determination of m
x ∆ y = x² − 2xy + y²
2 ∆ − 5 = √m
2² − 2(2 × –5) + (–5)² = √m
4 – 2(–10) + 25 = √m
4 + 20 + 25 = √m
49 = √m
Take the square of both side
49² = m
2401 = m
m = 2401
II. Simplify ((n+1) ∆ y)/n
We'll begin by obtaining (n+1) ∆ y. This can be obtained as follow:
x ∆ y = x² − 2xy + y²
(n+1) ∆ y = (n+1)² – 2(n+1)y + y²
(n+1) ∆ y = n² + 2n + 1 – 2ny – 2y + y²
(n+1) ∆ y = n² + 2n – 2ny – 2y + y² + 1
(n+1) ∆ y = n² – 2ny + y² + 2n – 2y + 1
(n+1) ∆ y = n² – ny – ny + y² + 2n – 2y + 1
(n+1) ∆ y = n(n – y) – y(n – y) + 2(n – y) + 1
(n+1) ∆ y = (n – y + 2)(n – y) + 1
((n+1) ∆ y)/n = [(n – y + 2)(n – y) + 1] / n
((n+1) ∆ y)/n = 1/n[(n – y + 2)(n – y) + 1]