1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Serga [27]
3 years ago
7

SOMEBODY PLEASE FAST HELP!! (view photo, math related)

Mathematics
1 answer:
charle [14.2K]3 years ago
4 0
That stuff ain’t written right email your teacher
You might be interested in
Can someone please help me! This is trigonometry
lbvjy [14]
Tan=opposite over adjacent so the equation is tan=4/1 x=4
3 0
3 years ago
Read 2 more answers
Todd sold half of his comic books and then bought 6 more. he now has 16 how many did he begin with​
Mandarinka [93]

Answer:he started with 20

Step-by-step explanation:

6 0
4 years ago
Read 2 more answers
Simplify -40/7+8-23/7
Oduvanchick [21]

Answer:

-1

Step-by-step explanation:

-40/7+8-23/7

= -40/7+8-23/7

= 16/7-23/7

= -1

7 0
2 years ago
Read 2 more answers
Can someone plz help hereI got confused
Rainbow [258]

Answer:

Option 4

Step-by-step explanation:

-½ means it's -0.5, and then -0.4 then -3/10 = -0.3 and then -0.23, therefore it goes -½, -0.4, -3/10, then -0.23

8 0
3 years ago
A school has 200 students and spends $40 on supplies for each student. The principal expects the number of students to increase
Xelga [282]

Answer:

\mathbf{S(t)=200(\frac{105}{100})^{x}}

\mathbf{A(t)=40(\frac{98}{100})^{x}}

\mathbf{E(t)=S(t) \cdot A(t)=200(\frac{105}{100})^{x} \cdot 40(\frac{98}{100})^{x}=8000(\frac{10290}{10000})^{x}}

Step-by-step explanation:

<h3>The predicted number of students over time, S(t) </h3>

Rate of increment is 5% per year.  

A function 'S(t)' which gives the number of students in school after 't' years.  

S(0) means the initial year when the number of students is 200.

S(0) = 200  

S(1) means the number of students in school after one year when the number increased by 5% than previous year which is 200.  

S(1) = 200 + 5% of 200 = 200+\frac{5}{100}\time200 = 200(1+\frac{5}{100}) = 200(\frac{105}{100})  

S(2) means the number of students in school after two year when the number increased by 5% than previous year which is S(1)  

S(2) = S(1) + 5% of S(1) = \textrm{S}(1)(\frac{105}{100}) = 200(\frac{105}{100})(\frac{105}{100}) = 200(\frac{105}{100})^{2}  

.  

.  

.  

.  

.  

Similarly \mathbf{S(x)=200(\frac{105}{100})^{x}}  

<h3>The predicted amount spent per student over time, A(t) </h3>

Rate of decrements is 2% per year.  

A function 'A(t)' which gives the amount spend on each student in school after 't' years.  

A(0) means the initial year when the number of students is 40.  

A(0) = 40  

A(1) means the amount spend on each student in school after one year when the amount decreased by 2% than previous year which is 40.  

A(1) = 40 + 2% of 40 = 40-\frac{2}{100}\time40 = 40(1-\frac{2}{100}) = 40(\frac{98}{100})  

A(2) means the amount spend on each student in school after two year when the amount decreased by 2% than previous year which is A(1)  

A(2) = A(1) + 2% of A(1) = \textrm{A}(1)(\frac{98}{100}) = 40(\frac{98}{100})(\frac{98}{100}) = 40(\frac{98}{100})^{2}  

.  

.  

.  

.  

.  

Similarly \mathbf{A(x)=40(\frac{98}{100})^{x}}  

<h3>The predicted total expense for supplies each year over time, E(t)</h3>

Total expense = (number of students) ×  (amount spend on each student)

E(t) = S(t) × A(t)

\mathbf{E(t)=S(t) \cdot A(t)=200(\frac{105}{100})^{x} \cdot 40(\frac{98}{100})^{x}=8000(\frac{10290}{10000})^{x}}

\mathbf{E(t)=8000(\frac{10290}{10000})^{x}}

(NOTE : The value of x in all the above equation is between zero(0) to ten(10).)

6 0
3 years ago
Read 2 more answers
Other questions:
  • Please Help Thank You I will reward brainliest
    15·1 answer
  • PLEASE Solve Fast |x+2|&lt;4
    5·1 answer
  • PLEASE HELP! Work must be shown for this problem. Solve for x. Round answers to the nearest hundredth (2 decimal places).
    13·1 answer
  • How do you rearrange y=a-x to make x the subject of the formula
    9·2 answers
  • [6-(3x2)]+4 Simplifying Expression
    8·1 answer
  • A business with an original capital of ​$40 comma 000 has income and expenses each week of ​$8000 and ​$4700​, respectively. If
    5·1 answer
  • Pls help and show working due ASAP <br> Please
    13·1 answer
  • Find the only positive integer number less than 20,000 that is also the sum of three positive integers, all containing exactly 7
    9·1 answer
  • If Mr. Bisby wants to know the average of the grades on a test, what measure of central tendency would he be looking at?
    5·1 answer
  • Factorise the following.​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!