Answer:
77 goles
Step-by-step explanation:
Un futbolista ha marcado 2/9 del número de goles marcados por su equipo.
Otro anotó una cuarta parte del resto.
El resto = 1 - 2/9
= 7/9
De ahí que otro futbolista anotó
= 1/4 de 7/9
= 7/36
Si los otros jugadores han marcado 45 goles
Tenemos que averiguar la fracción de goles que marcó el otro jugador
Deje que el número total de goles marcados por el equipo durante la temporada = 1
Por lo tanto:
1 - (2/9 + 7/36)
1 - (8 + 7/36)
1 - 15/36
1 - 5/12
= 7/12
¿Cuántos goles marcó el equipo a lo largo de la temporada?
El número total de goles que marcó ese equipo se calcula como:
7/12 × x = 45
Donde x = número total de goles
7x / 12 = 45
Cruz multiplicar
7x = 45 × 12
x = 45 × 12/7
x = 77,142857143
Aproximadamente = 77 goles
Answer:
![\displaystyle \frac{d}{dx}[3x + 5x] = 8](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5B3x%20%2B%205x%5D%20%3D%208)
General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: ![\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bcf%28x%29%5D%20%3D%20c%20%5Ccdot%20f%27%28x%29)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Differentiate</u>
- Simplify:

- Derivative Property [Multiplied Constant]:
![\displaystyle y' = 8\frac{d}{dx}[x]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%208%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%5D)
- Basic Power Rule:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
6(2(5) - 4)
6(10 - 4)
6(6)
36
To get y by itself subtract 2x from both sides. The left side becomes 3y=12-2x. Then divide by 3 on both sides to get y by itself. Which you get y=4-(2/3)x
Answer:
B. 8
Explanation:
The figure forms a septagon.
The hexagons form the base, and the rectangles attached to them form the sides.
Therefore, in total the solid has two hexagons as sides and 6 rectangles connecting the hexagon to the base hexagon. Hence, in total the solid has
2 + 6 = 8 faces.