1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Eva8 [605]
3 years ago
13

PLEASE HELP!!! What is the slope parallel to 5x + y = 3, please show me step by step, will give the brainliest for this answer.

Mathematics
1 answer:
Andreas93 [3]3 years ago
3 0

Answer:

-5

Step-by-step explanation:

First, put the equation into the form y = mx +b (where m is the slope and b is the y-intercept)

This would look like:

5x + y = 3\\y = -5x + 3

This means the slope is -5.

Parallel lines always have the same slope, so the slope of the parallel line is also -5

You might be interested in
a dog weighs 44 pounds and the veterinarian thinks it needs to lose 7 pounds. mikala wrote the equation x+7=44 to represent the
Reptile [31]
Weight of the dog in question = 44 pounds
Amount of weight the dog needs to reduce as per the veterinarian = 7 pounds
Let us assume the new weight of the dog in question = x
Then
44 - x = 7
This equation can also be represented as
x + 7 = 44.
So from the above deductions we can say that 44 - x = 7 is the correct equation. Another equation to represent the situation given in the question is x + 7 = 44
8 0
4 years ago
Quick!!!<br> If the side lengths of a triangle are 23, 16, and 7; what type of triangle is it?
ololo11 [35]
<h3>No it does not form a triangle!~</h3>

Let's prove it by pythogoras theorem,

  • Hypotenuse = 23
  • Base = 7
  • Perpendicular = 16

\bf \: H^{2} =P^{2} +B^{2}

\sf \:  {23}^{2}  =  {16}^{2}  +  {7}^{2}

\sf \: 529 = 256 + 49

\sf \: 529  \cancel= 305

<h3>Hence (Proved) </h3>
7 0
3 years ago
Each book is Fiction or Non-Fiction
Paha777 [63]

thats true everybody knows no offence

3 0
4 years ago
Solve each equation. I don't know this
MArishka [77]
1.(2x - 3)(x + 7) = 0
   2x^{2} + 14x - 3x - 21 = 0                                  
   2x^{2} + 11x - 21 = 0                       
  
   x = \frac{-11 +/- \sqrt{11^{2} - 4(2)(-21)}}{2(2)}                 
  
   x = \frac{-11 +/- \sqrt{121 + 168}}{4}
  
   x = \frac{-11 +/- \sqrt{289}}{4}
  
   x = \frac{-11 +/- 17}{4}
  
   x = -2.75 +/- 4.25
   x = -2.75 + 4.25                     x = -2.75 - 4.25
   x = 1.5                                                   <u></u>x = -7
----------------------------------------------------------------------------------------------------------  2.8x(2x - 5) = 0
   8x(2x) - 8x(5) = 0
   16x^{2} - 40x = 0
   16x^{2} - 4x + 0 = 0
  
   x = \frac{-(-40) +/- \sqrt{(-40)^{2} - 4(16)(0)}}{2(16)}
  
   x = \frac{40 +/- \sqrt{1600 - 0}}{32}
  
   x = \frac{40 +/- \sqrt{1600}}{32}
  
   x = \frac{40 +/- 40}{32}
  
   x = 1.25 +/- 1.25
   x = 1.25 + 1.25                                  x = 1.25 - 1.25
   x = 2.5                                               x = 0
----------------------------------------------------------------------------------------------------------
3.x^{2} + 3x - 10 = 0
  
   x = \frac{-3 +/- \sqrt{3^{2} - 4(1)(-10)}}{2(1)}
  
   x = \frac{-3 +/- \sqrt{9 + 40}}{2}
  
   x = \frac{-3 +/- \sqrt{49}}{2}
  
   x = \frac{-3 +/- {7}}{2}
  
   x = -1.5 +/- 3.5
   x = -1.5 + 3.5               x = -1.5 - 3.5
   x = 2                             x = -5
----------------------------------------------------------------------------------------------------------
4. x^{2} = 13x - 36
    x^{2} - 13x + 36 = 13x - 13x - 36 + 36
    x^{2} - 13x + 36 = 0
   
    x = \frac{-(-13) +/- \sqrt{(-13)^{2} - 4(1)(36)}}{2(1)}

   
    x = \frac{13 +/- \sqrt{169 - 144}}{2}
  
    x = \frac{13 +/- \sqrt{25}}{2}
 
    x = \frac{13 +/- 5}{2}

    x = 6.5 +/- 2.5
    x = 6.5 + 2.5                     x = 6.5 - 2.5
    x = 9                                 x = 4
----------------------------------------------------------------------------------------------------------
5.3x^{2} - 7x + 2 = 0
  
   x = \frac{-(-7) +/- \sqrt{(-7)^{2} - 4(1)(2)}}{2(3)}

   x = \frac{7 +/- \sqrt{49 - 8}}{6}

   x = \frac{7 +/- \sqrt{41}}{6}

   x = \frac{7 +/- 6.403124237432849}{6}
 
   x = 1.167+/- 1.06718737290547
   x = 1.67 + 1.06718737290547              x = 1.167 - 1.06718737290547
   x = 2.73718737290547                         x = 0.60281262709453
----------------------------------------------------------------------------------------------------------
6.10x^{2} - 10x + 9 = 5x^{2} + 4x + 1
   10x^{2} - 5x^{2} - 10x + 10x + 9 - 1 = 5x^{2} - 5x^{2} + 4x + 10x + 1 - 1
   5x^{2} + 8 = 14x
   5x^{2} - 14x + 8 = 14x - 14x
   <u />5x^{2} - 14x + 8 = 0
  
   x = \frac{-(-14) + \sqrt{(-14)^{2} - 4(5)(8)}}{2(5)}
  
   x = \frac{14 +/- \sqrt{196 - 160}}{10}
  
   x = \frac{14 +/- \sqrt{36}}{10}.
  
   x = \frac{14 +/- 6}{10}
  
   x = 1.4 +/- 0.6
   x = 1.4 + 0.6                x = 1.4 - 0.6
   <u />x = 2                            x = 0.8
 
 
5 0
4 years ago
Eric would like to buy a new math folder for $2.22 and a case of mechanical pencils for $2.95. He would also like to buy sticker
MrMuchimi

Answer:

0.5x+5.17:  10.00

hope it still helps

8 0
3 years ago
Read 2 more answers
Other questions:
  • Help me plz and ill upvote
    7·1 answer
  • Question= graph y=4x-9
    13·1 answer
  • Derrick's Dog Sitting $12 plus $5 per hour
    8·2 answers
  • Can someone please help!!
    6·2 answers
  • Each student is on 1 team. Race Details The field is 40 feet wide. • Each runner gets 1 lane. •Mrs. Achilles has 7 trophies. Use
    15·1 answer
  • Leo is running a 5% mile race. It took him 2 minutes to run the first mile of the race. If Leo continues running at the
    15·1 answer
  • Solve the inequality: -2 (2x – 4) &lt; 4 (2 - x).
    12·1 answer
  • 5
    8·1 answer
  • DESPERATELY NEED HELP WILL GIBE BRAINLYNEST promise
    11·1 answer
  • A cylindrical cup with a base diameter of 4 inches and a height of 12 inches is filled with orange juice that occupies 67% of th
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!