Split up the interval [0, 2] into <em>n</em> equally spaced subintervals:
![\left[0,\dfrac2n\right],\left[\dfrac2n,\dfrac4n\right],\left[\dfrac4n,\dfrac6n\right],\ldots,\left[\dfrac{2(n-1)}n,2\right]](https://tex.z-dn.net/?f=%5Cleft%5B0%2C%5Cdfrac2n%5Cright%5D%2C%5Cleft%5B%5Cdfrac2n%2C%5Cdfrac4n%5Cright%5D%2C%5Cleft%5B%5Cdfrac4n%2C%5Cdfrac6n%5Cright%5D%2C%5Cldots%2C%5Cleft%5B%5Cdfrac%7B2%28n-1%29%7Dn%2C2%5Cright%5D)
Let's use the right endpoints as our sampling points; they are given by the arithmetic sequence,

where
. Each interval has length
.
At these sampling points, the function takes on values of

We approximate the integral with the Riemann sum:

Recall that

so that the sum reduces to

Take the limit as <em>n</em> approaches infinity, and the Riemann sum converges to the value of the integral:

Just to check:

Answer:
The sum of the given series is 1023
Step-by-step explanation:
Geometric series states that a series in which a constant ratio is obtained by multiplying the previous term.
Sum of the geometric series is given by:
where a is the first term and n is the number of term.
Given the series: 
This is a geometric series with common ratio(r) = 2
We have to find the sum of the series for 10th term.
⇒ n = 10 and a = 1
then;

Therefore, the sum of the given series is 1023
Answer:
Waffle house :3
Step-by-step explanation:
Answer:
Step-by-step explanation:
Find the unit rate for this painting:
3/5 of wall surface 3/5 15 9
------------------------------- = --------------- * --------- = -----------
(8/15) hour 8/15 15 8
Jane could actually paint the whole wall plus 1/8 more of it in one hour.