expenses is greater in Jan and Feb
Jan −85.6 Loss
Feb −162.44 Loss
Mar 0
June 306.77 Gain
July 301.5 Gain
Aug 337.88 Gain
The surface area of the triangular prism is 1664 square inches.
Explanation:
Given that the triangular prism has a length of 20 inches and has a triangular face with a base of 24 inches and a height of 16 inches.
The other two sides of the triangle are 20 inches each.
We need to determine the surface area of the triangular prism.
The surface area of the triangular prism can be determined using the formula,

where b is the base, h is the height, p is the perimeter and l is the length
From the given the measurements of b, h, p and l are given by
,
,
and

Hence, substituting these values in the above formula, we get,

Simplifying the terms, we get,

Adding the terms, we have,

Thus, the surface area of the triangular prism is 1664 square inches.
Answer:
m=-9+n
Step-by-step explanation:
you want to get m by itself so you subtract 9 on both sides. 9-9 crosses out and you get m by itself. Which leads you to m= -9+n
Answer:
150 degrees
Step-by-step explanation:
Graphing the complex number we see the angle terminates in the second quadrant. This means the argument, the angle, will be between 90 degrees and 180 degrees.
So if we create a right triangle with that point after graphing it. We see the height of that triangle is 5 because that is the imaginary part. The base of that triangle has length
. The problem is this doesn't give us any part of the angle we want, but it does give us the complementary of the part of the angle that is in second quadrant.
Let's find the complementary angle.
So the opposite side of the complementary angle is 5.
The adjacent side of the complementary angle is
.




So 90-30=60.
The answer therefore 60+90=150.