The exact value is
<span>sin<span>(arccos<span>(<span>3/4</span>)</span>)</span></span>The equation for cosine is <span>cos<span>(A)</span>=<span>AdjacentHypotenuse</span></span>. The inside trig function is <span>arccos<span>(<span>3/4</span>)</span></span>, which means <span>cos<span>(A)</span>=<span>3/4</span></span>. Comparing <span>cos<span>(A)</span>=<span>AdjacentHypotenuse</span></span> with <span>cos<span>(A)</span>=<span>3/4</span></span>, find <span>Adjacent=3</span> and <span>Hypotenuse=4</span>. Then, using the pythagorean theorem, find <span>Opposite=<span>√7</span></span>.<span>Adjacent=3</span><span>Opposite=<span>√7</span></span><span>Hypotenuse=4</span>Substitute in the known variables for the equation <span>sin<span>(A)</span>=<span>OppositeHypotenuse</span></span>.<span>sin<span>(A)</span>=<span><span>√7</span> over 4</span></span>Simplify.<span><span>√7</span><span> over 4</span></span>
C = 0.3*-2.7 = -0.81
Hope it helps:)
Answer:
I think - 11 Is a negative number that is why it is an integer number maybe whole number also
Answer:
14.36446281 is the answer, you probably have to round
Answer:
The probability that the instrument does not fail in an 8-hour shift is 
The probability of at least 1 failure in a 24-hour day is 
Step-by-step explanation:
The probability distribution of a Poisson random variable X representing the number of successes occurring in a given time interval or a specified region of space is given by the formula:

Let X be the number of failures of a testing instrument.
We know that the mean
failures per hour.
(a) To find the probability that the instrument does not fail in an 8-hour shift, you need to:
For an 8-hour shift, the mean is 

(b) To find the probability of at least 1 failure in a 24-hour day, you need to:
For a 24-hour day, the mean is 
