Answer:
(x + 6, y + 0), 180° rotation, reflection over the x‐axis
Step-by-step explanation:
The answer can be found out simply , a trapezoid has its horizontal sides usually parallel meanwhile the vertical sides are not parallel.
The horizontal parallel sides are on the x-axis.
Reflection over y- axis would leave the trapezoid in a vertical position such that the trapezoid ABCD won't be carried on the transformed trapezoid as shown in figure.
So option 1 and 2 are removed.
Now, a 90 degree rotation would leave the trapezoid in a vertical position again so its not suitable again.
In,The final option (x + 6, y + 0), 180° rotation, reflection over the x‐axis, x+6 would allow the parallel sides to increase in value hence the trapezoid would increase in size,
180 degree rotation would leave the trapezoid in an opposite position and reflection over x-axis would bring it below the Original trapezoid. Hence, transformed trapezoid A`B`C`D` would carry original trapezoid ABCD onto itself
Answer:
(64+320π) cm^3
Step-by-step explanation:
The volume of a cube is the length*width*height, so
the volume of this cube is 4*4*4=64 cm^3
The volume of a cylinder is the base*height
The base of a cylinder is the area of a circle, which is π*the radius of the circle squared
The diameter of the circle base is 16, and the radius is half the diameter, so it is 16/2=8.
The area of the base of the cylinder is π8^2=64π
Now, multiply the base by the height, 5
64π*5=320πcm^3
We now have the volume of the cube and the volume of the cylinder, so now we just add them:
(64+320π) cm^3
Answer:
The average temperature is 
Step-by-step explanation:
From the question we are told that
The temperature of the coffee after time t is ![T(t) = 25 + 72 e^{[-\frac{t}{45} ]}](https://tex.z-dn.net/?f=T%28t%29%20%3D%20%2025%20%2B%2072%20e%5E%7B%5B-%5Cfrac%7Bt%7D%7B45%7D%20%5D%7D)
Now the average temperature during the first 22 minutes i.e fro
minutes is mathematically evaluated as
![T_{a} = \frac{1}{22-0} \int\limits^{22}_{0} {25 +72 e^{[-\frac{t}{45} ]}} \, dx](https://tex.z-dn.net/?f=T_%7Ba%7D%20%3D%20%20%5Cfrac%7B1%7D%7B22-0%7D%20%20%5Cint%5Climits%5E%7B22%7D_%7B0%7D%20%7B25%20%2B72%20e%5E%7B%5B-%5Cfrac%7Bt%7D%7B45%7D%20%5D%7D%7D%20%5C%2C%20dx)
![T_{a} = \frac{1}{22} [25 t + 72 [\frac{e^{[-\frac{t}{45} ]}}{-\frac{1}{45} } ] ] \left| 22} \atop {0}} \right.](https://tex.z-dn.net/?f=T_%7Ba%7D%20%3D%20%5Cfrac%7B1%7D%7B22%7D%20%5B25%20t%20%20%2B%20%2072%20%5B%5Cfrac%7Be%5E%7B%5B-%5Cfrac%7Bt%7D%7B45%7D%20%5D%7D%7D%7B-%5Cfrac%7B1%7D%7B45%7D%20%7D%20%5D%20%5D%20%5Cleft%7C%2022%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
![T_{a} = \frac{1}{22} [25 t - 3240e^{[-\frac{t}{45} ]} ] \left | 45} \atop {{0}} \right.](https://tex.z-dn.net/?f=T_%7Ba%7D%20%3D%20%5Cfrac%7B1%7D%7B22%7D%20%5B25%20t%20%20-%203240e%5E%7B%5B-%5Cfrac%7Bt%7D%7B45%7D%20%5D%7D%20%5D%20%5Cleft%20%7C%2045%7D%20%5Catop%20%7B%7B0%7D%7D%20%5Cright.)
![T_{a} = \frac{1}{22} [25 (22) - 3240e^{[-\frac{22}{45} ]} - (- 3240e^{0} )]](https://tex.z-dn.net/?f=T_%7Ba%7D%20%3D%20%5Cfrac%7B1%7D%7B22%7D%20%5B25%20%2822%29%20%20-%203240e%5E%7B%5B-%5Cfrac%7B22%7D%7B45%7D%20%5D%7D%20%20%20-%20%28-%203240e%5E%7B0%7D%20%29%5D)
![T_{a} = \frac{1}{22} [550 - 1987.12 + 3240]](https://tex.z-dn.net/?f=T_%7Ba%7D%20%3D%20%5Cfrac%7B1%7D%7B22%7D%20%5B550%20%20-%201987.12%20%20%2B%20%203240%5D)

-2x + 12 < - 4......subtract 12 from both sides
-2x + 12 - 12 < -4 - 12....simplify
-2x < -16...divide both sides by -2, changing the inequality sign
(-2/-2)x > -16/-2....simplify
x > 8