Answer:
A.
Explanation:
I chose this because it seems more reasonable . Because its in the air so im guess that its gravitational bc to stay on top of a hill you need balance . Im sorry if its wrong k . I tried .
Answer:
;)..........................................................................................
Explanation:
For this, you need to know 1) the mass of the hydrate and 2) the mass of the anhydrous salt. Once you have both of these, you will subtract 1) from 2) to find the mass of the water lost.
From the problem, you know that 1) = 2.000 g.
Now you need to find 2). You know that your crucible+anhydrous salt is 5.022 g. To find just the anhydrous salt, subtract the mass of the crucible (3.715 g).
1) = 5.022 g - 3.715 g = 1.307 g
Now you can complete our original task.
Mass H2O = 2) - 1) = 2.000 g - 1.307 g = 0.693 g.
The percent by weight (w/w%) of sugar in soda : 6.216%
<h3>Further explanation</h3>
Given
mass of sugar = 23 g
total mass = 370 g
Required
the percent weight
Solution
%weight = (mass of solute : mass of solution) x 100%
solute = sugar
solution = solvent + solute = water + sugar
percent weight of sugar in soda :
= (23 : 370) x 100%
= 6.216 %
1/2=5750 years, 1/2(1/2)=1/4, (1/2)(1/2)(1/2)=1/8, (1/2)(1/2)(1/2)(1/2)=1/6
4 halflives have passed so 4(5750)=23000 years since the tree was chopped down
1000000 atoms (1/2)=500000 atoms(1/2)=250000(1/2)=125000(1/2)=62500 atoms would remain in the wood after 4 halflives
Dinosaurs became extinct around 62 million years ago, so if 14C's half life has a value of 5750 years, it would be gone or in such small amounts that dating would be ineffective today.
As Potassium decays into Argon in 1.3 billion years, apart from volcanic activity, it would enable geologists to effectively date things that are really, really, really old.