And the significant amount of volume can be differed by its solitude
I think the charge is +2
Hope this helps
Answer:
ΔH = 125.94kJ
Explanation:
It is possible to make algebraic sum of reactions to obtain ΔH of reactions (Hess's law). In the problem:
1. 2W(s) + 3O2(g) → 2WO3(s) ΔH = -1685.4 kJ
2. 2H2(g) + O2(g) → 2H2O(g) ΔH = -477.84 kJ
-1/2 (1):
WO3(s) → W(s) + 3/2O2(g) ΔH = 842.7kJ
3/2 (2):
3H2(g) + 3/2O2(g) → 3H2O(g) ΔH = -716.76kJ
The sum of last both reactions:
WO3(s) + 3H2(g) → W(s) + 3H2O(g)
ΔH = 842.7kJ -716.76kJ
<h3>ΔH = 125.94kJ </h3>
Answer:
A is the molecular formula for xylose because shows the actual number of atoms in the compound: Formula B is the empirical formula for xylose because it shows the smallest whole-number ratio for the different atoms in the compound: Formula A is the molecular formula for xylose because shows the arrangement of atoms in the compound: Formula B is the structurab formula for xylose because it shows the smallest whole-number ratio for the different atoms in the compound: Formula A is the empirical formula for xylose because it shows the actual number of atoms in the compound: Formula B is the molecular formula for xylose because it shows the smallest whole-number ratio for the different atoms in the compound: Formula A is the structural formula for xylose because it shows the arrangement of atoms in the compound: Formula B is the empirical formula for xylose because it shows the smallest whole-number ratio for the different atoms in the compound.
Answer:
1. Nuts
2. Canned meats and seafood
3. Dried grains
4. Dark chocolate
5. Protein powders