Hydrogen bonds are strong intermolecular forces created when a hydrogen atom bonded to an electronegative atom approaches a nearby electronegative atom. Greater electronegativity of the hydrogen bond acceptor will lead to an increase in hydrogen-bond strength.
I hope this helps
10. You demonstrated the difference in density of the two objects. It is a physical property.
11. First calculate the density for all of them: density = mass/volume
Density:
A. 5/6 g/ml
B. 10/9 g/ml
C. 15/16 g/ml
D. 20/10 g/ml
If the density of the substance is higher than the density of the substance it is put in, then it will sink. So substances B and D will sink in water, as their densities are higher than 1 g/ml.
12. Ammonia weighs less than water does-- for example, the weight of 8 gallons of ammonia will be equivalent to the weight of 5 gallons of water.
Hope this helped!
Answer: There are 7 alpha-particle emissions and 4 beta-particle emissions involved in this series
Explanation:
Alpha Decay: In this process, a heavier nuclei decays into lighter nuclei by releasing alpha particle. The mass number is reduced by 4 units and atomic number is reduced by 2 units.
Beta Decay : It is a type of decay process, in which a proton gets converted to neutron and an electron. This is also known as -decay. In this the mass number remains same but the atomic number is increased by 1.
In radioactive decay the sum of atomic number or mass number of reactants must be equal to the sum of atomic number or mass number of products .

Thus for mass number : 235 = 207+4X
4X= 28
X = 7
Thus for atomic number : 92 = 82+2X-Y
2X- Y = 10
2(7) - Y= 10
14-10 = Y
Y= 4

Thus there are 7 alpha-particle emissions and 4 beta-particle emissions involved in this series
Answer:
Pressure = 4313.43mmHg
Explanation:
P1 = ?
V1 = 0.335L
V2 = 1700mL =1700*10^-3L = 1.7L
P2 = 850mmhg
From Boyle's law, the volume of a fixed mass of gas is inversely proportional to its pressure provided that temperature remains constant.
P = k / v
K = pv. P1V1 = P2V2 = P3V3 =........=PnVn
P1V1 = P2V2
Solve for P1,
P1 = (P2*V2) / V1
P1 = (850 * 1.7) / 0.335
P1 = 4313.43mmHg
The pressure of the gas was 4313.43mmHg