Okay, so, to find out if an equation has one solution, an infinite number of solutions, or no solutions, we must first solve the equation:
(a) 6x + 4x - 6 = 24 + 9x
First, combine the like-terms on both sides of the equal sign:
10x - 6 = 24 + 9x
Now, we need to get the numbers with the variable 'x,' on the same side, by subtracting, in this case:
10x - 6 = 24 + 9x
-9x. -9x
______________
X - 6 = 24
Now, we do the opposite of subtraction, and add 6 to both sides:
X - 6 = 24
+6 +6
_________
X = 30
So, this particular equation has one solution.
(a). One solution
_____________________________________________________
(b) 25 - 4x = 15 - 3x + 10 - x
Okay, so again, we combine the like-terms, on the same side of the equal sign:
25 - 4x = 25 - 2x
Now, we get the 2 numbers with the variable 'x,' to the same side of the equal sign:
25 - 4x = 25 - 2x
+ 2x + 2x
________________
25 - 2x = 25
Next, we do the opposite of addition, and, subtract 25 on each side:
25 - 2x = 25
-25 -25
___________
-2x = 0
Finally, because we can't divide 0 by -2, this tells us that this has an infinite number of solutions.
(b) An infinite number of solutions.
__________________________________________________
(c) 4x + 8 = 2x + 7 + 2x - 20
Again, we combine the like-terms, on the same side as the equal sign:
4x + 8 = 4x - 13
Now, we get the 'x' variables on the same side, again, and, we do that by doing the opposite of addition, which, is subtraction:
4x + 8 = 4x - 13
-4x -4x
______________
8 = -13
Finally, because there is no longer an 'x' or variable, we know that this equation has no solution.
(c) No Solution
_________________________________
I hope this helps!
Answer:
All fractions except 2/3 lol
Step-by-step explanation:
Answer:
See Explanation
Step-by-step explanation:
The question is incomplete, as the histogram is not attached.
However, the solution to your question is to select the interval with the highest frequency
Take for instance, after getting readings from the histogram, yiu have:
1 - 10: 8
11 - 20: 5
21 - 30: 11
31 - 40: 2
And so on.......
Interval 11 - 20 will represent the required interval because it has the highest frequency.
Answer:
Step-by-step explanation:
what