f(n) = -6.5n + 14.5
&
f(1) = 8, f(n+1) = f(n) - 6.5
Answer:
56 different tests
Step-by-step explanation:
Given:
Number of wires available (n) = 8
Number of wires taken at a time for testing (r) = 5
In order to find the number of different tests required for every possible pairing of five wires, we need to find the combination rather than their permutation as order of wires doesn't disturb the testing.
So, finding the combination of 5 pairs of wires from a total of 8 wires is given as:

Plug in the given values and solve. This gives,

Therefore, 56 different tests are required for every possible pairing of five wires.
The sum of the two <em>rational</em> equations is equal to (3 · n² + 5 · n - 10) / (3 · n³ - 6 · n²).
<h3>How to simplify the addition between two rational equations</h3>
In this question we must use <em>algebra</em> definitions and theorems to simplify the addition of two <em>rational</em> equations into a <em>single rational</em> equation. Now we proceed to show the procedure of solution in detail:
- (n + 5) / (n² + 3 · n - 10) + 5 / (3 · n²) Given
- (n + 5) / [(n + 5) · (n - 2)] + 5 / (3 · n²) x² - (r₁ + r₂) · x + r₁ · r₂ = (x - r₁) · (x - r₂)
- 1 / (n - 2) + 5 / (3 · n²) Associative and modulative property / Existence of the multiplicative inverse
- [3 · n² + 5 · (n - 2)] / [3 · n² · (n - 2)] Addition of fractions with different denominator
- (3 · n² + 5 · n - 10) / (3 · n³ - 6 · n²) Distributive property / Power properties / Result
To learn more on rational equations: brainly.com/question/20850120
#SPJ1
Here is the answer in exact form or decimal form.