Answer:
<em>Trabajó 3 horas al día</em>
Step-by-step explanation:
<u>Proporcionalidad</u>
Una persona planeó terminar la obra en 15 dias, pero tardó 10 dias adicionales porque trabajó 2 horas menos por día.
Usaremos proporciones para calcular las horas de trabajo diarias.
Si 2 horas diarias representan 10 dias de atraso, entonces cada hora representa 5 dias de trabajo.
Si la obra tardaba 15 dias, entonces la persona trabajó 15/5 = 3 horas diarias.
The annual returns will be calculated as follows:
a] Here we use the formula:
A=p(1+r/100)^n
A=future amount
p=principle
r=returns
n=time
We are given:
A=500, p=400, t=1
Plugging the values in the formula we obtain:
500=400(1+r)^1
simplifying and solving for r:
1.25=1+r
thus
r=1.25-1
r=0.25~25%
b] Using the formula above:
A=p(1+r/100)^n
A=2500+100=2600, p=2000, n=1 year
plugging the values in the equation we obtain:
2600=2000(1+r)^1
simplifying and solving for r we obtain:
2600/2000=1+r
1.3=1+r
hence
r=1.3-1
r=0.3~30%
The answer is there are 6 possible outcomes: {1, 2, 3, 4, 5, 6} Hope this helps!
Answer: 10.8-62.91t+38.8n
Step-by-step explanation:
0.2(5x – 0.3) – 0.5(–1.1x + 4.2) = 6.5x – 2.06
Solution:
Given expression is 0.2(5x – 0.3) – 0.5(–1.1x + 4.2).
To simplify the expression, first multiply the common term within the bracket.
0.2(5x – 0.3) – 0.5(–1.1x + 4.2)
= (5x × 0.2 – 0.3 × 0.2) + (–1.1x × (–0.5) + 4.2 × (–0.5))
= (1x – 0.06) + (5.5x – 2.1)
= x – 0.06 + 5.5x – 2
Combine like terms together.
= x + 5.5x – 0.06 – 2
= 6.5x – 2.06
0.2(5x – 0.3) – 0.5(–1.1x + 4.2) = 6.5x – 2.06
Hence the simplified form of 0.2(5x – 0.3) – 0.5(–1.1x + 4.2) is 6.5x – 2.06.