Answer:
Explanation:
a ) Time period T = 2 s
Angular velocity ω = 2π / T
= 2π / 2 = 3.14 rad /s
Initial moment of inertia I₁ = 200 + mr²
= 200 + 25 x 2.5²
=356.25
Final moment of inertia
I₂ = 200 + 25 X 1.5 X 1.5
= 256.25
b ) We apply law of conservation of momentum
I₁ X ω₁ = I₂ X ω₂
ω₂ = I₁ X ω₁ / I₂
Putting the values

ω₂ = 4.365 rad s⁻¹
c ) Increase in rotational kinetic energy
=1/2 I₂ X ω₂² - 1/2 I₁ X ω₁²
.5 X 256.25 X 4.365² - .5 X 356.25 X 3.14²
= 684.95 J
This energy comes from work done against the centripetal pseudo -force.
Answer:
B.
Explanation:
A beta particle is formed when a neutron changes into a proton and a high-energy electron. The proton stays in the nucleus but the electron leaves the atom as a beta particle.
I would say your answer is B, since Newton's 3rd law is, "For every action, there is an equal and opposite reaction."
It's talking about pairs of actions. Sorry if I'm wrong.
Answer:
(a) 
(b) 
Solution:
As per the question:
Mass of the object, m = 1.30 kg
Length of the rod, L = 0.780 m
Angular speed, 
Now,
(a) To calculate the rotational inertia of the system about the axis of rotation:
Since, the rod is mass less, the moment of inertia of the rotating system and that of the object about the rotation axis will be equal:

(b) To calculate the applied torque required for the system to rotate at constant speed:
Drag Force, F = 

Answer:
true is the answer of the question