Answer:
about 19.6° and 73.2°
Explanation:
The equation for ballistic motion in Cartesian coordinates for some launch angle α can be written ...
y = -4.9(x/s·sec(α))² +x·tan(α)
where s is the launch speed in meters per second.
We want y=2.44 for x=50, so this resolves to a quadratic equation in tan(α):
-13.6111·tan(α)² +50·tan(α) -16.0511 = 0
This has solutions ...
tan(α) = 0.355408 or 3.31806
The corresponding angles are ...
α = 19.5656° or 73.2282°
The elevation angle must lie between 19.6° and 73.2° for the ball to score a goal.
_____
I find it convenient to use a graphing calculator to find solutions for problems of this sort. In the attachment, we have used x as the angle in degrees, and written the function so that x-intercepts are the solutions.
Answer:
I believe the answer is C
Explanation:
because centripetal force is generally assosiated with rotation and how fast something spins
Need to know the equation for force
F=MA
F is force
M is mass- we need to know the mass
A is acceleration
use "x" for mass
120 N= 1.3x
divide 1.3 in both side
kg unit for mass
X=92.31 kg
or
mass = 92.31 kg
Hope this helps
Answer:
The average current is 19.567 A
Solution:
As per the question:
Charge, Q = 
Time, t = 
Now,
We know that current is constituted by the rate of transfer of the charge per unit time. Thus we can write:
I =
(1)
Now, the charge that was transferred is 86 % of the original value.
Therefore,
We replace Q by 0.86Q in eqn (1):
I = 
Because their is nothing at the geographical poles that attracts the magnet