Answer:
b^2-4b+3=0
b²-3x-b+3=0
b(b-3)-1(b-3)=0
(b-3)(b-1)=0
either
b=3 or b=1
.
2n^2 + 7 = -4n + 5
2n²+4n+7-5=0
2n²+4n+2=0
2(n²+2n+1)=0
(n+1)²=0/2
:.n=-1
.
x - 3x^2 = 5+ 2x - x^2
0=5+ 2x - x^2-x +3x^2
0=5+x+2x²
2x²+x+5=0
comparing above equation with ax²+bx +c we get
a=2
b=1
c=5
x={-b±√(b²-4ac)}/2a ={-1±√(1²-4×2×5)}/2×1
={-1±√-39}/2
Answer:
Trapezoid 1 (left side):
Base 1 = 2
Base 2 = 5
Trapezoid 2 (right side):
Base 1 = 6
Base 2 = 8
Step-by-step explanation:
<u>1st trapezoid:</u>
b_1 = x
b_2 = x + 3
h = 4
Hence, area (from formula) would be:

<u>2nd trapezoid:</u>
b_1 = 3x
b_2 = 4x
h = 2
Putting into formula, we get:

Let's equate both equations for area and find x first:

We can plug in 2 into x and find length of each base of each trapezoid.
Trapezoid 1 (left side):
Base 1 = x = 2
Base 2 = x + 3 = 2 + 3 = 5
Trapezoid 2 (right side):
Base 1 = 3x = 3(2) = 6
Base 2 = 4x = 4(2) = 8
Answer:
Perimeter=48.497
Volume=997.661
Step-by-step explanation:
Perimeter:

Volume:

From the chord theorem we have:
