Answer:
Yes, a minimum phase continuous time system is also minimum phase when converted into discrete time system using bilinear transformation.
Step-by-step explanation:
Bilinear Transform:
In digital signal processing, the bilinear transform is used to convert continuous time system into discrete time system representation.
Minimum-Phase:
We know that a system is considered to be minimum phase if the zeros are situated in the left half of the s-plane in continuous time system. In the same way, a system is minimum phase when its zeros are inside the unit circle of z-plane in discrete time system.
The bilinear transform is used to map the left half of the s-plane to the interior of the unit circle in the z-plane preserving the stability and minimum phase property of the system. Therefore, a minimum phase continuous time system is also minimum phase when converted into discrete time system using bilinear transformation.
Is a collection of well defined and distinct objects.
Ex: ( A B C D E) all letters
Ex2: ( January, February, March, April) all months
Answer:what goes around comes around
Step-by-step explanation:
"i need points too thanks"
Answer:
see below
Step-by-step explanation:
In the attachment, the points are listed in the order given in the problem statement. (They are listed to the right of the "rotation matrix", with x-coordinates above y-coordinates.)
__
I really don't like to do repetitive calculations, so I try to use a graphing calculator or spreadsheet whenever possible. Angles are measured CCW.
As always, the rotation transformations are ...
180° — (x, y) ⇒ (-x, -y)
270° — (x, y) ⇒ (y, -x)