<span>Answer
is: activation energy of this reaction is 212,01975 kJ/mol.
Arrhenius equation: ln(k</span>₁/k₂) = Ea/R (1/T₂ - 1/T₁<span>).
k</span>₁<span> = 0,000643
1/s.
k</span>₂ = 0,00828
1/s.
T₁ = 622 K.
T₂ = 666 K.
R = 8,3145 J/Kmol.
1/T₁<span> = 1/622 K = 0,0016 1/K.
1/T</span>₂<span> = 1/666 K =
0,0015 1/K.
ln(0,000643/0,00828) = Ea/8,3145 J/Kmol · (-0,0001 1/K).
-2,55 = Ea/8,3145 J/Kmol · (-0,0001 1/K).
Ea = 212019,75 J/mol = 212,01975 kJ/mol.</span>
Answer- 400 grams of AlCl3 is the maximum amount of AlCl3 produced during the experiment.
Given - Number of moles of Al(NO3)3 - 4 moles
Number of moles of NaCl - 9 moles
Find - Maximum amount of AlCl3 produced during the reaction.
Solution - The complete reaction is - Al(NO3)3 + 3NaCl --> 3NaNO3 + AlCl3
To find the maximum amount of AlCl3 produced during the reaction, we need to find the limiting reagent.
Mole ratio Al(NO3)3 - 4/1 - 4
Mole ratio NaCl - 9/3 - 3
Thus, NaCl is the limiting reagent in the reaction.
Now, 3 moles of NaCl produces 1 mole of AlCl3
9 moles of NaCl will produce - 1/3*9 - 3 moles.
Weight of AlCl3 - 3*133.34 - 400 grams
Thus, 400 grams of AlCl3 is the maximum amount of AlCl3 produced during the experiment.
Answer:
the sun beams down on the pool and heats it up top to bottom the deeper the colder
Asteroids come from the asteroid belt