Answer:
0.093 mole of C₆H₁₂.
Explanation:
We'll begin by calculating the molar mass of C₆H₁₂. This can be obtained as follow:
Molar mass of C₆H₁₂ = (12×6) + (12×1)
= 72 + 12
= 84 g/mol
Finally, we shall determine the number of mole in 7.8 g of C₆H₁₂. This can be obtained as follow:
Molar mass of C₆H₁₂ = 84 g/mol
Mass of C₆H₁₂ = 7.8 g
Mole of C₆H₁₂ =?
Mole = mass / molar mass
Mole of C₆H₁₂ = 7.8 / 84
Mole of C₆H₁₂ = 0.093 mole
Thus, 7.8 g contains 0.093 mole of C₆H₁₂.
Answer:
Net ionic equation:
Ba²⁺(aq) + SO₄²⁻(aq) → BaSO₄(s)
Explanation:
Chemical equation:
BaCl₂ + Na₂SO₄ → BaSO₄ + NaCl
Balanced Chemical equation:
BaCl₂(aq) + Na₂SO₄(aq) → BaSO₄(s) + 2NaCl(aq)
Ionic equation:
Ba²⁺(aq) + 2Cl⁻(aq) + 2Na⁺(aq) + SO₄²⁻(aq) → BaSO₄(s)+ 2Na⁺(aq) + 2Cl⁻ (aq)
Net ionic equation:
Ba²⁺(aq) + SO₄²⁻(aq) → BaSO₄(s)
The Cl⁻(aq) and Na⁺ (aq) are spectator ions that's why these are not written in net ionic equation. The BaSO₄ can not be splitted into ions because it is present in solid form.
Spectator ions:
These ions are same in both side of chemical reaction. These ions are cancel out. Their presence can not effect the equilibrium of reaction that's why these ions are omitted in net ionic equation.
B is the right answer because it’s a double replacement reaction and the potassium is balanced with the sulphate
The answer would be the amino group and the carboxyl group
hope this helpssss