1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kramer
3 years ago
14

Jocelyn said that the triangle below is not a right triangle. Her work is shown below. Explain what she did wrong and show Jocel

yn the correct solution.
Mathematics
1 answer:
jekas [21]3 years ago
7 0

Jocelyn said that the triangle below is not a right triangle. Her work is shown below. Explain what she did wrong, and show Jocelyn the correct solution.

You might be interested in
In the Butterfly Museum, there are only pink and yellow butterflies. The ratio of the number of pink butterflies to the number o
RideAnS [48]

Answer:  There are 48 butterflies altogether.

Step-by-step explanation:

Since we have given that

The ratio of number of pink butterflies to the number of yellow butterflies is 3:5

So,

Let the number of pink butterflies be 3x

Let the number of yellow butterflies be 5x

As we have given that there are 18 pink butterflies,

So,

3x=18\\\\x=\frac{18}{3}\\\\x=6

So, total number of butterflies is given by

5x+3x=8x\\\\8x=8\times 6=48

Hence, there are 48 butterflies altogether.

4 0
3 years ago
Read 2 more answers
Kaitaia has one more than 5 times the number or wristbands that shelly has. Rea has three more than twice the number that shelly
saul85 [17]

Answer: The required expression is 3x+4.

Step-by-step explanation:

Since we have given that

Let the number of wristbands that Shelly has be 'x'

Let the number of wristbands that Kaitaia has be 5x+1

Let the number of wristbands that Rea has be three more than twice the number that shelly has be

'2x+3'

According to question, the expression that shows the number of wristbands more Katia has than Rea is given by

5x+1-(2x-3)\\\\=5x+1-2x+3\\\\=3x+4

Hence, the required expression is 3x+4.

3 0
3 years ago
Read 2 more answers
Find the area of the region enclosed by the graphs of these equations. (CALCULUS HELP)
sergiy2304 [10]

Answer:

\displaystyle A = \frac{20\sqrt{15}}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  1. Multiplication Property of Equality
  2. Division Property of Equality
  3. Addition Property of Equality
  4. Subtraction Property of Equality

<u>Algebra I</u>

  • Terms/Coefficients
  • Graphing
  • Exponential Rule [Root Rewrite]:                                                                   \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Area - Integrals

U-Substitution

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

F: y = √(15 - x)

G: y = √(15 - 3x)

H: y = 0

<u>Step 2: Find Bounds of Integration</u>

<em>Solve each equation for the x-value for our bounds of integration.</em>

F

  1. Set <em>y</em> = 0:                                                                                                         0 = √(15 - x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 15

G

  1. Set y = 0:                                                                                                         0 = √(15 - 3x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - 3x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -3x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 5

This tells us that our bounds of integration for function F is from 0 to 15 and our bounds of integration for function G is 0 to 5.

We see that we need to subtract function G from function F to get our area of the region (See attachment graph for visual).

<u>Step 3: Find Area of Region</u>

<em>Integration Part 1</em>

  1. Rewrite Area of Region Formula [Integration Property - Subtraction]:     \displaystyle A = \int\limits^b_a {f(x)} \, dx - \int\limits^d_c {g(x)} \, dx
  2. [Integral] Substitute in variables and limits [Area of Region Formula]:     \displaystyle A = \int\limits^{15}_0 {\sqrt{15 - x}} \, dx - \int\limits^5_0 {\sqrt{15 - 3x}} \, dx
  3. [Area] [Integral] Rewrite [Exponential Rule - Root Rewrite]:                       \displaystyle A = \int\limits^{15}_0 {(15 - x)^{\frac{1}{2}}} \, dx - \int\limits^5_0 {(15 - 3x)^{\frac{1}{2}}} \, dx

<u>Step 4: Identify Variables</u>

<em>Set variables for u-substitution for both integrals.</em>

Integral 1:

u = 15 - x

du = -dx

Integral 2:

z = 15 - 3x

dz = -3dx

<u>Step 5: Find Area of Region</u>

<em>Integration Part 2</em>

  1. [Area] Rewrite [Integration Property - Multiplied Constant]:                       \displaystyle A = -\int\limits^{15}_0 {-(15 - x)^{\frac{1}{2}}} \, dx + \frac{1}{3}\int\limits^5_0 {-3(15 - 3x)^{\frac{1}{2}}} \, dx
  2. [Area] U-Substitution:                                                                                   \displaystyle A = -\int\limits^0_{15} {u^{\frac{1}{2}}} \, du + \frac{1}{3}\int\limits^0_{15} {z^{\frac{1}{2}}} \, dz
  3. [Area] Reverse Power Rule:                                                                         \displaystyle A = -(\frac{2u^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15} + \frac{1}{3}(\frac{2z^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15}
  4. [Area] Evaluate [Integration Rule - FTC 1]:                                                   \displaystyle A = -(-10\sqrt{15}) + \frac{1}{3}(-10\sqrt{15})
  5. [Area] Multiply:                                                                                               \displaystyle A = 10\sqrt{15} + \frac{-10\sqrt{15}}{3}
  6. [Area] Add:                                                                                                     \displaystyle A = \frac{20\sqrt{15}}{3}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Area Under the Curve - Area of a Region (Integration)

Book: College Calculus 10e

3 0
3 years ago
Njdcjkdckjcbnjbjkx bj. cbj.bjkcbjvkbjdvbjkdddc
andriy [413]

Answer:

lol

Step-by-step explanation:

can i have brainlyest pls?

7 0
3 years ago
Please help will give brainliest
Marat540 [252]
<h2>Answer:</h2>

This relation is a function because a function, in fact this is a linear function. We have that:

\left[\begin{array}{cc}x & y\\2 & 3\\4 & 4\\6 & 5\\8 & 6\end{array}\right]

As you can see below, all the points have been plotted an this is a linear function. Therefore, with two points we can get the equation, so:

The \ equation \ of \ the \ line \ with \ slope \ m \\ passing \ through \ the \ point \ (x_{1},y_{1}) \ is:\\ \\ y-y_{1}=m(x-x_{1}) \\ \\ \\ y-3=\frac{4-3}{4-2}(x-2) \\ \\ \\ y-3=\frac{1}{2}(x-2) \\ \\ y=\frac{1}{2}x-1+3 \\ \\ y=\frac{1}{2}x+2 \\ \\ \\ Where: \\ \\ (x_{1},y_{1})=(2,3) \\ \\ (x_{2},y_{2})=(4,4)

Finally, the equation is:

\boxed{y=\frac{1}{2}x+2}

5 0
3 years ago
Read 2 more answers
Other questions:
  • Which graph represents the solution for the open sentence 3|p| – 5 &lt; 7.
    5·2 answers
  • Determine the total number of roots of each polynomial function <br><br> g(x) = 5x - 12x2 + 3
    13·2 answers
  • Which of the following numbers is a rational?
    8·1 answer
  • Solve for the following equation. 7=r^1/2 please help
    6·1 answer
  • Brian buys a pair of pants for $35 and wants to buy some shirts, which are $10 each. Write an equation for y, the total cost, if
    13·2 answers
  • What is the center of a circle whose equation is x
    9·1 answer
  • When the Bucks play Chiefs at football, the probability that the Chiefs, on present form, will win is 0.56. In a competition, th
    11·1 answer
  • #11 Find the slope of a line<br> that passes through the<br> points (-1, -3) and (-6,5)
    6·1 answer
  • Which of the following is a true statement?
    6·1 answer
  • X to the power of 2 plus 25 equals 0
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!