Ok so
-10, -6
4,-6
-3,-13
-3,1
should be it
Step-by-step explanation:
Root of the function, where y = 0
f(x) = x² + 2x - 1
0 = x² + 2x - 1
x² + 2x - 1 = 0
x² + 2x = 1
x² + 2x + 1 = 1 + 1
(x + 1)² = 2
x + 1 = ±√2
x = -1 ± √2
Roots → x = -1 ± √2
Alright, let's do all of these (though this is a bit long).
1.
The constant is 1.8. All other values are coefficients to variables, which as the name implies will change.
2.
1 hour is 60 minutes, 1 minute is 60 seconds.
So, 4.2 *60 *60 = 15120 seconds.
3.
<span>−5x−4(x−6)=−3-5x-4(x-6)=-3
Let's move all x to one side, and all other numbers to another.
-5x-4(x-6)=-3-5x-4(x-6)=-3
x can be any value you want, if you actually solve this you'll only end up with -3 = -3, which is correct, of course.
Let me show you:
</span><span>−5x−4(x−6)=−3-5x-4(x-6)=-3
+5x +4(x-6) +5x +4(x-6)
-3 = -3
The value of x is irrelevant, then. X can be any real number.
4.
I'm going to assume it was an error in printing with this? If not please correct me.
m=a+2b(or b2)
subtract 2b from each
a=m-2b
(This question seems kind of odd. We should probably address this in the comments.)
5.
</span><span>5(x−2)<−3x+6
Move all x to one side, numbers to other.
5x-10<-3x+6
+3x +3x
+10 +10
8x<16
/8
<span>x < 2
</span>6.
y-3=3(x-5)
alright, to find zeros set one variable to zero and solve
x first
-3=3x-15
+15 +15
3x=12
/3
x=4
x-int is (4,0)
now y
</span>y-3=3(0-5)
y-3=-15
+3 +3
y=-12
so y-int is (0,-12)
i've got to sleep now so i'll do the rest tomorrow. Sorry for the incomplete answer.
Answer:
a = 3
Step-by-step explanation:
Factor both expressions
x² - x - 6
Consider the factors of the constant term (- 6) which sum to give the coefficient of the x- term (- 1)
The factors are - 3 and + 2 , since
- 3 × 2 = - 6 and - 3 + 2 = - 1 , thus
x² - x - 6 = (x - 3)(x + 2)
-----------------------------------
x² + 3x - 18
consider factors of constant term (- 18) which sum to give the coefficient of the x- term (+ 3)
The factors are + 6 and - 3 , since
6 × - 3 = - 18 and 6 - 3 = + 3 , thus
x² + 3x - 18 = (x + 6)(x - 3)
Both expressions have a common factor of (x - 3)
Compare with (x - a ), then a = 3