Answer:
Regular Polygons
Polygons can also be classified as equilateral, equiangular, or both. Equilateral polygons have congruent sides, like a rhombus. Equiangular polygons have congruent interior angles, like a rectangle. When a polygon is both equilateral and equiangular, it is called a regular polygon.
Answer:
Options A and B are true
(A) Before the authority increases tolls on any of the area bridges, it is required by law to hold public hearings at which objections to the proposed increase can be raised.
B. (B) Whenever bridge tolls are increased, the authority must pay a private contractor to adjust the automated toll-collecting machines.
Step-by-step explanation:
A. In a developed society, it's imperative for the authority to hold public hearings with stake holders to air their views before the tolls are increased, this would enable the authority to carry out proper assessment to know both the positive and negative impact of increasing the toll.
B. Increasing the tolls implies that there must be adjustment in the automated tolling machines and this would incur cost on the authority, this contract would be executed by private contractors.
Answer: 5/4 = 1 2/8
Step-by-step explanation: That's the answer
the solid is made up of 2 regular octagons, 8 sides, joined up by 8 rectangles, one on each side towards the other octagonal face.
from the figure, we can see that the apothem is 5 for the octagons, and since each side is 3 cm long, the perimeter of one octagon is 3*8 = 24.
the standing up sides are simply rectangles of 8x3.
if we can just get the area of all those ten figures, and sum them up, that'd be the area of the solid.
![\bf \textit{area of a regular polygon}\\\\ A=\cfrac{1}{2}ap~~ \begin{cases} a=apothem\\ p=perimeter\\[-0.5em] \hrulefill\\ a=5\\ p=24 \end{cases}\implies A=\cfrac{1}{2}(5)(24)\implies \stackrel{\textit{just for one octagon}}{A=60} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \stackrel{\textit{two octagon's area}}{2(60)}~~+~~\stackrel{\textit{eight rectangle's area}}{8(3\cdot 8)}\implies 120+192\implies 312](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barea%20of%20a%20regular%20polygon%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7B1%7D%7B2%7Dap~~%20%5Cbegin%7Bcases%7D%20a%3Dapothem%5C%5C%20p%3Dperimeter%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20a%3D5%5C%5C%20p%3D24%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Ccfrac%7B1%7D%7B2%7D%285%29%2824%29%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bjust%20for%20one%20octagon%7D%7D%7BA%3D60%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Btwo%20octagon%27s%20area%7D%7D%7B2%2860%29%7D~~%2B~~%5Cstackrel%7B%5Ctextit%7Beight%20rectangle%27s%20area%7D%7D%7B8%283%5Ccdot%208%29%7D%5Cimplies%20120%2B192%5Cimplies%20312)