By simplifying
. This will result in a simplified version of
.
The Simplifying Algorithm is a wonderful way to simplify complex mathematics problems. It can be used to solve equations, convert fractions to decimals, and perform many other math operations. In this problem, the Simplifying Algorithm will help you reduce ![\[x - \frac{{23}}{{{x^2}}} - x - 20 - \frac{2}{5} - x\]](https://tex.z-dn.net/?f=%5C%5Bx%20-%20%5Cfrac%7B%7B23%7D%7D%7B%7B%7Bx%5E2%7D%7D%7D%20-%20x%20-%2020%20-%20%5Cfrac%7B2%7D%7B5%7D%20-%20x%5C%5D)
Since two opposites add up to 0, remove them from the expression.
![\[ - \frac{{23}}{{{x^2}}} - \frac{{102}}{5} - x\]](https://tex.z-dn.net/?f=%5C%5B%20-%20%5Cfrac%7B%7B23%7D%7D%7B%7B%7Bx%5E2%7D%7D%7D%20-%20%5Cfrac%7B%7B102%7D%7D%7B5%7D%20-%20x%5C%5D)
Write all numerators above the least common denominator 5x2
![\[ - \frac{{115 + 102{x^2} + 5{x^3}}}{{5{x^2}}}\]](https://tex.z-dn.net/?f=%5C%5B%20-%20%5Cfrac%7B%7B115%20%2B%20102%7Bx%5E2%7D%20%2B%205%7Bx%5E3%7D%7D%7D%7B%7B5%7Bx%5E2%7D%7D%7D%5C%5D)
Use the commutative property to reorder the terms so that constants on the left
![\[\frac{{ - 5{x^3} - 115 - 102{x^2}}}{{5{x^2}}}\]](https://tex.z-dn.net/?f=%5C%5B%5Cfrac%7B%7B%20-%205%7Bx%5E3%7D%20-%20115%20-%20102%7Bx%5E2%7D%7D%7D%7B%7B5%7Bx%5E2%7D%7D%7D%5C%5D)
Rearrange the terms
![\[\frac{{ - 5{x^3} - 102{x^2} - 115}}{{5{x^2}}}\]](https://tex.z-dn.net/?f=%5C%5B%5Cfrac%7B%7B%20-%205%7Bx%5E3%7D%20-%20102%7Bx%5E2%7D%20-%20115%7D%7D%7B%7B5%7Bx%5E2%7D%7D%7D%5C%5D)
By reording the terms
![\[ - \frac{{5{x^3} + 102{x^2} + 115}}{{5{x^2}}}\]](https://tex.z-dn.net/?f=%5C%5B%20-%20%5Cfrac%7B%7B5%7Bx%5E3%7D%20%2B%20102%7Bx%5E2%7D%20%2B%20115%7D%7D%7B%7B5%7Bx%5E2%7D%7D%7D%5C%5D)
Hence, by simplifying this equation, divide both numerator and denominator. This will result in a simplified version of
.
To learn more about simplifyication visit:
brainly.com/question/1542396
#SPJ1
Answer:
84 couples
Step-by-step explanation:
First add the number of couples that have only one spouse that prefers dramas.
23+39+37+27=126
126 couples out of 250 prefer dramas.
126/250=.56 or 56 percent
To find the answer by making a prediction based on this data, you would find 56% of 150.
150x.56=84 out of the additional 150 surveyed couples will have one spouse that prefers a drama.
Step-by-step explanation:
I am thinking the X axis. if wrong, sorry. but I am really thinking that is the answer
Answer:
1 minus 1 is 0
Step-by-step explanation:
1-1 equals 0
Substituting the values given, we get
(2)*(3) + 4 ;
Using BODMAS
We get
6 + 4
= 10