Simplify each term<span>.</span>
Simplify <span>3log(x)</span><span> by moving </span>3<span> inside the </span>logarithm<span>.
</span><span>log(<span>x^3</span>)+2log(y−1)−5log(x)</span><span>
</span>
Simplify <span>2log(y−1)</span><span> by moving </span>2<span> inside the </span>logarithm<span>.
</span><span>log(<span>x^3</span>)+log((y−1<span>)^2</span>)−5log(x)</span><span>
</span>
Rewrite <span>(y−1<span>)^2</span></span><span> as </span><span><span>(y−1)(y−1)</span>.</span><span>
</span><span>log(<span>x^3</span>)+log((y−1)(y−1))−5log(x)</span><span>
</span>
Expand <span>(y−1)(y−1)</span><span> using the </span>FOIL<span> Method.
</span><span>log(<span>x^3</span>)+log(y(y)+y(−1)−1(y)−1(−1))−5log(x)</span><span>
</span>
Simplify each term<span>.
</span><span>log(<span>x^3</span>)+log(<span>y^2</span>−2y+1)+log(<span>x^<span>−5</span></span>)</span><span>
</span>Remove the negative exponent<span> by rewriting </span><span>x^<span>−5</span></span><span> as </span><span><span>1/<span>x^5</span></span>.</span><span>
</span><span>log(<span>x^3</span>)+log(<span>y^2</span>−2y+1)+log(<span>1/<span>x^5</span></span>)</span><span>
</span>
Combine<span> logs to get </span><span>log(<span>x^3</span>(<span>y^2</span>−2y+1))
</span><span>log(<span>x^3</span>(<span>y^2</span>−2y+1))+log(<span>1/<span>x^5</span></span>)
</span>Combine<span> logs to get </span><span>log(<span><span><span>x^3</span>(<span>y^2</span>−2y+1)/</span><span>x^5</span></span>)</span><span>
</span>log(x^3(y^2−2y+1)/x^5)
Cancel <span>x^3</span><span> in the </span>numerator<span> and </span>denominator<span>.
</span><span>log(<span><span><span>y^2</span>−2y+1/</span><span>x^2</span></span>)</span><span>
</span>Rewrite 1<span> as </span><span><span>1^2</span>.</span>
<span><span>y^2</span>−2y+<span>1^2/</span></span><span>x^2</span>
Factor<span> by </span>perfect square<span> rule.
</span><span>(y−1<span>)^2/</span></span><span>x^2</span>
Replace into larger expression<span>.
</span>
<span>log(<span><span>(y−1<span>)^2/</span></span><span>x^2</span></span>)</span>
We know that two complements add up to 90.
Let's call the smaller angle x and the larger y.
3x = y
x + y = 90
We can use simple substitution.
x + 3x = 90
4x = 90
x = 22.5
Then, since we know that 3x=y, we can find the larger angle.
3*22.5 = 67.5
Answer: Last Option

Step-by-step explanation:
In this case we have a uniform probability. In the graph the horizontal axis represents the possible values of the variable x and the vertical axis represents the probability P(x).
To calculate the probability that x is between 4.71 and 7.4 we calculate the area under the curve.
The horizontal length between 4.71 and 7.4 is:
.
Then notice that the vertical length in this interval is 0.125.
Then the area of a rectangle is:

Where l is the length and w is the width.
In this case we have to:


So


1600*0.85
The answer is 1360 tickets..