Answer:
Bias for the estimator = -0.56
Mean Square Error for the estimator = 6.6311
Step-by-step explanation:
Given - A normally distributed random variable with mean 4.5 and standard deviation 7.6 is sampled to get two independent values, X1 and X2. The mean is estimated using the formula (3X1 + 4X2)/8.
To find - Determine the bias and the mean squared error for this estimator of the mean.
Proof -
Let us denote
X be a random variable such that X ~ N(mean = 4.5, SD = 7.6)
Now,
An estimate of mean, μ is suggested as

Now
Bias for the estimator = E(μ bar) - μ
= 
= 
= 
= 
= 
= 3.9375 - 4.5
= - 0.5625 ≈ -0.56
∴ we get
Bias for the estimator = -0.56
Now,
Mean Square Error for the estimator = E[(μ bar - μ)²]
= Var(μ bar) + [Bias(μ bar, μ)]²
= 
= 
= ![\frac{1}{64} ( [{3Var(X_{1}) + 4Var(X_{2})] }) + 0.3136](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B64%7D%20%28%20%5B%7B3Var%28X_%7B1%7D%29%20%2B%204Var%28X_%7B2%7D%29%5D%20%20%7D%29%20%2B%200.3136)
= ![\frac{1}{64} [{3(57.76) + 4(57.76)}] } + 0.3136](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B64%7D%20%5B%7B3%2857.76%29%20%2B%204%2857.76%29%7D%5D%20%20%7D%20%2B%200.3136)
= ![\frac{1}{64} [7(57.76)}] } + 0.3136](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B64%7D%20%5B7%2857.76%29%7D%5D%20%20%7D%20%2B%200.3136)
= ![\frac{1}{64} [404.32] } + 0.3136](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B64%7D%20%5B404.32%5D%20%20%7D%20%2B%200.3136)
= 
= 6.6311
∴ we get
Mean Square Error for the estimator = 6.6311
Answer:
-6
-6i
6i
6
Step-by-step explanation:
1) √4 . √-3 . √-3


-6
2) √-4 . √-3 . √-3
.
Therefore,
- 6i
3) √4 . √3 . √-3


6i
4) √4 . √3 . √3


Therefore, √4 . √3 . √3 = 2 . 3 = 6
Answer:
Point C: (4, 0)
Step-by-step explanation:
Parallelograms are quadrilaterals with two pairs of parallel sides, this means they will have the same slope between two line segments.
point slope form between two points: y - y1 = m (x - x1)
point A (2, 6) and D (4,4):
slope: point form, 6 - 4 = m(2 - 4)
2 = -2m
m (slope) =
=
now that you know the change in position, apply this to vertice B to get the position of the final vertice.
B(2, 2)
C (2 +2, 2-2) = C(4, 0)
The final position of C vertice for parrallelogram A(2,6), B(2,2), D(4,4) will be C(4,0)
I would say 1700 , I hope this helps
M=6 is the correct answer
Plz mark brainliest