1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mars2501 [29]
3 years ago
7

A normally distributed random variable with mean 4.5 and standard deviation 7.6 is sampled to get two independent values, X1 and

X2. The mean is estimated using the formula (3X1 4X2)/8. Determine the bias and the mean squared error for this estimator of the mean. Bias: Mean Square Error:
Mathematics
1 answer:
mr Goodwill [35]3 years ago
6 0

Answer:

Bias for the estimator = -0.56

Mean Square Error for the estimator = 6.6311

Step-by-step explanation:

Given - A normally distributed random variable with mean 4.5 and standard deviation 7.6 is sampled to get two independent values, X1 and X2. The mean is estimated using the formula (3X1 + 4X2)/8.

To find - Determine the bias and the mean squared error for this estimator of the mean.

Proof -

Let us denote

X be a random variable such that X ~ N(mean = 4.5, SD = 7.6)

Now,

An estimate of mean, μ is suggested as

\mu = \frac{3X_{1} + 4X_{2}  }{8}

Now

Bias for the estimator = E(μ bar) - μ

                                    = E( \frac{3X_{1} + 4X_{2}  }{8}) - 4.5

                                    = \frac{3E(X_{1}) + 4E(X_{2})}{8} - 4.5

                                    = \frac{3(4.5) + 4(4.5)}{8} - 4.5

                                    = \frac{13.5 + 18}{8} - 4.5

                                    = \frac{31.5}{8} - 4.5

                                    = 3.9375 - 4.5

                                    = - 0.5625 ≈ -0.56

∴ we get

Bias for the estimator = -0.56

Now,

Mean Square Error for the estimator = E[(μ bar - μ)²]

                                                             = Var(μ bar) + [Bias(μ bar, μ)]²

                                                             = Var( \frac{3X_{1} + 4X_{2}  }{8}) + 0.3136

                                                             = \frac{1}{64} Var( {3X_{1} + 4X_{2}  }) + 0.3136

                                                             = \frac{1}{64} ( [{3Var(X_{1}) + 4Var(X_{2})]  }) + 0.3136

                                                             = \frac{1}{64} [{3(57.76) + 4(57.76)}]  } + 0.3136

                                                             = \frac{1}{64} [7(57.76)}]  } + 0.3136

                                                             = \frac{1}{64} [404.32]  } + 0.3136

                                                             = 6.3175 + 0.3136

                                                              = 6.6311

∴ we get

Mean Square Error for the estimator = 6.6311

You might be interested in
An architect drew plans for an office building.
Sav [38]

Answer:

b

Step-by-step explanation:

4 0
3 years ago
What is the slope and y-intercept of line q graphed below?
beks73 [17]

The correct answer is C) 1/3 and (0, 1)

The y-intercept part is somewhat simple. In order for it to be a y-intercept, the x value of the ordered pair must be 0. That is only true in B and C, therefore they are the only possible answers.

To find the slope, we must choose two points on the line and use the slope formula. We can start by using the y-intercept (0, 1) and also (3, 2). Now we use the slope formula.

m = (y2 - y1)/(x2 - x1)

In this equation m is equal to slope, the first point is (x1, y1) and the second point is (x2, y2)

m = (y2 - y1)/(x2 - x1)

m = (2 - 1)/(3 - 0)

m = 1/3

Now knowing the slope, you can match this with answer C.

3 0
2 years ago
F(x)=-9x^2-2x and g(x)=-3x^2+6x-9, find (f-g)(x) and (f-g)(-4)
Alona [7]

Answer:

(f - g)(x)= - 6 {x}^{2} - 8x + 9

(f - g)(-4!)= - 55

Step-by-step explanation:

f(x) =  - 9 {x}^{2}  - 2x,  \:  \: g(x) =  - 3 {x}^{2}  + 6x - 9 \\ (f - g)(x) = f(x)  - g(x) \\  = - 9 {x}^{2}  - 2x - (- 3 {x}^{2}  + 6x - 9) \\  =  - 9 {x}^{2}  - 2x  + 3 {x}^{2}   -  6x  +  9 \\    \purple{ \boxed{ \bold{(f - g)(x)= - 6 {x}^{2}  - 8x + 9}}} \\ (f - g)( - 4)= - 6 {( -4 )}^{2}  - 8( - 4) + 9 \\  =  - 6 \times 16 + 32 + 9 \\  =  - 96 + 41 \\ \red{ \boxed{ \bold{(f - g)( - 4)= - 55}}}

6 0
3 years ago
7,652x5 please regroup I don’t understand :(
scoundrel [369]

Answer:

38260

Step-by-step explanation:

ur welcome

3 0
2 years ago
Read 2 more answers
Express 0.32 as a fraction
jok3333 [9.3K]
The answer is (32/100)-(8/25 )
6 0
3 years ago
Read 2 more answers
Other questions:
  • Find the quotient 6 divided 27L 600 mL
    14·1 answer
  • Concur Technologies Inc is a large expense-management company located in Redmond Washington. The wall street Journal asked Concu
    8·1 answer
  • Giving out BRAINLIEST, THANKS, 5 STARS, and POINTS if answered correctly!<br> PLS HELP ASAP!
    14·1 answer
  • PLEASE PLEASE HURRY!!!!!!!
    9·1 answer
  • I just took a screenshot of it, but I have no idea how to do this
    12·1 answer
  • <img src="https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B3%7D%20" id="TexFormula1" title=" \frac{1}{3} " alt=" \frac{1}{3} " align=
    8·1 answer
  • Where does the line y = 3x + 5 cross the y-axis?
    6·1 answer
  • What is the domain of the function graph
    15·2 answers
  • What is the arc length for a central angle of 120° on a circle with radius 5 units?
    11·1 answer
  • 3128 ÷ 4= 9632 ÷ 8 = <br><br>please explain how u got it please explain how u got it<br><br><br>=
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!